Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Phys Chem Chem Phys ; 25(11): 8013-8027, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876508

RESUMO

Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion.

2.
J Phys Chem A ; 127(1): 216-223, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563166

RESUMO

We study computationally thermally activated delayed fluorescence (TADF) in donor-acceptor compounds. The relevant electronic excited states that are strongly affected by the dielectric environment are treated by a polarization consistent framework. The high fidelity potential energy surfaces are used following a quantum-mechanical Fermi's golden rule (FGR) picture to calculate rates of intersystem crossing (ISC) and reverse intersystem crossing (RISC). To demonstrate the potency of the approach, we consider isomers of benzonitrile functionalized tert-butyl-substituted dimethylacridine (DMAC-BN), which were recently found to perform well as TADF emitters. The calculated excited state energies that appear to reproduce well measured spectral trends with respect to the dielectric constant are used to parametrize ISC/RISC FGR rates. The calculated rates reproduce well measured rates, whereas semiclassical based rates are grossly underestimated. In particular, we find in agreement with the recent experimental study [Phys. Rev. Appl.2019, 12, 044021] that the ortho and meta isomers are significantly more effective as TADF emitters. The computational framework provides valuable insight at the molecular level into RISC rates and therefore can contribute to the design of materials of increased TADF efficiency.

3.
Plant Cell Rep ; 42(10): 1571-1587, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482559

RESUMO

KEY MESSAGE: We report the size dependent uptake of dsRNA loaded MSNPs into the leaves and roots of Nicotiana benthamiana plants and accessed for their relative reduction in Tomato leaf curl New Delhi viral load. A non-GMO method of RNA interference (RNAi) has been recently in practice through direct delivery of double stranded RNA into the plant cells. Tomato leaf curl New Delhi virus (ToLCNDV), a bipartitie begomovirus, is a significant viral pathogen of many crops in the Indian subcontinent. Conventional RNAi cargo delivery strategies for instance uses viral vectors and Agrobacterium-facilitated delivery, exhibiting specific host responses from the plant system. In the present study, we synthesized three different sizes of amine-functionalized mesoporous silica nanoparticles (amino-MSNPs) to mediate the delivery of dsRNA derived from the AC2 (dsAC2) gene of ToLCNDV and showed that these dsRNA loaded nanoparticles enabled effective reduction in viral load. Furthermore, we demonstrate that amino-MSNPs protected the dsRNA molecules from nuclease degradation, while the complex was efficiently taken up by the leaves and roots of Nicotiana benthamiana. The real time gene expression evaluation showed that plants treated with nanoparticles of different sizes ~ 10 nm (MSNPDEA), ~ 32 nm (MSNPTEA) and ~ 66 nm (MSNPNH3) showed five-, eleven- and threefold reduction of ToLCNDV in N. benthamiana, respectively compared to the plants treated with naked dsRNA. This work clearly demonstrates the size dependent internalization of amino-MSNPs and relative efficacy in transporting dsRNA into the plant system, which will be useful in convenient topical treatment to protect plants against their pathogens including viruses. Mesoporous silica nanoparticles loaded with FITC, checked for its uptake into Nicotiana benthamiana.


Assuntos
Begomovirus , Nanopartículas , Doenças das Plantas , RNA de Cadeia Dupla , Begomovirus/genética , Doenças das Plantas/prevenção & controle , Interferência de RNA , RNA de Cadeia Dupla/genética , Nicotiana/genética , Sistemas de Liberação de Medicamentos , Dióxido de Silício
4.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33433311

RESUMO

Nanoviridae is a family of plant viruses (nanovirids) whose members have small isometric virions and multipartite, circular, single-stranded (css) DNA genomes. Each of the six (genus Babuvirus) or eight (genus Nanovirus) genomic DNAs is 0.9-1.1 kb and is separately encapsidated. Many isolates are associated with satellite-like cssDNAs (alphasatellites) of 1.0-1.1 kb. Hosts are eudicots, predominantly legumes (genus Nanovirus), and monocotyledons, predominantly in the order Zingiberales (genus Babuvirus). Nanovirids require a virus-encoded helper factor for transmission by aphids in a circulative, non-propagative manner. This is a summary of the ICTV Report on the family Nanoviridae, which is available at ictv.global/report/nanoviridae.


Assuntos
Nanoviridae/classificação , Nanoviridae/fisiologia , Animais , Afídeos/virologia , Babuvirus/classificação , Babuvirus/genética , Babuvirus/fisiologia , Babuvirus/ultraestrutura , DNA Viral/genética , Fabaceae/virologia , Genoma Viral , Insetos Vetores/virologia , Nanoviridae/genética , Nanoviridae/ultraestrutura , Nanovirus/classificação , Nanovirus/genética , Nanovirus/fisiologia , Nanovirus/ultraestrutura , Doenças das Plantas/virologia , Proteínas Virais/genética , Vírion/ultraestrutura , Replicação Viral , Zingiberales/virologia
5.
Arch Virol ; 166(10): 2905-2909, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34383166

RESUMO

Golden trumpet (Allamanda cathartica) plants were observed to exhibit mottling and distortion symptoms on leaves. The genome of an associated begomovirus (Al-K1) was amplified by rolling-circle amplification, cloned, and sequenced. The viral genome consisted of two circular ssDNA molecules, and the organization of the ORFs was similar to those of DNA-A and DNA-B components of bipartite begomoviruses. The size of DNA-A (KC202818) and DNA-B (MG969497) of the begomovirus was 2772 and 2690 nucleotides, respectively. Sequence analysis revealed that the DNA-A and DNA-B components shared the highest sequence identity with duranta leaf curl virus (MN537564, 87.8%) and cotton leaf curl Alabad virus (MH760452, 81.0%), respectively. Interestingly, the Al-K1 isolate shared significantly less nucleotide sequence identity with allamanda leaf curl virus (EF602306, 71.6%), the only monopartite begomovirus reported previously in golden trumpet from China. Al-K1 shared less than 91% sequence identity with other begomoviruses, and hence, according to the latest ICTV guidelines for species demarcation of begomoviruses, Al-K1 is proposed to be a member of a new species, and we propose the name "allamanda leaf mottle distortion virus" (AllLMoDV-[IN-Al_K1-12]) for this virus. AllLMoDV was detected in various golden trumpet samples from different locations by PCR with specific primers based on the genome sequence determined in this study. Our study provides evidence of the occurrence of a new bipartite begomovirus in a perennial ornamental plant in India.


Assuntos
Apocynaceae/virologia , Begomovirus/genética , Doenças das Plantas/virologia , Sequência de Bases , Begomovirus/classificação , DNA Viral/genética , Genoma Viral/genética , Índia , Fases de Leitura Aberta/genética , Filogenia , Folhas de Planta/virologia , Análise de Sequência de DNA , Especificidade da Espécie
6.
Phys Chem Chem Phys ; 19(46): 31316-31324, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29148559

RESUMO

The geometric, magnetic, and electronic properties and the drug capturing abilities of Hofmann-type metal organic frameworks (MOFs) were examined using theoretical calculations. The detailed theoretical calculations predicted that the Hofmann sheet can have two different conformations, planar and twisted. The Ni-Co sheet was the most stable among the systems studied, whereas the Ni-Fe sheet was the least stable. All of the sheets were magnetic spin semiconductors, having Dirac-like and dispersionless bands, which give rise to a major spatial separation between the charge carriers upon excitation. After treatment with bidentate ligands, such as pyrazine and bipyridine, these sheets produce a three dimensional cage-like structure, which is efficient for capturing small drug molecules, e.g., fluorouracil and niacin. This study shows that the magnetic metal atom and ligand structure have a significant effect on the drug capturing abilities of these systems. Therefore, these systems may be a tunable host system for drug delivery.


Assuntos
Portadores de Fármacos/química , Fluoruracila/química , Estruturas Metalorgânicas/química , Niacina/química , Cobalto/química , Fluoruracila/metabolismo , Ferro/química , Magnetismo , Niacina/metabolismo , Níquel/química , Termodinâmica
7.
Phytopathology ; 107(11): 1440-1445, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28597727

RESUMO

The effect of Groundnut bud necrosis virus (GBNV) infection on the life history traits of its vector, Thrips palmi, and its feeding preference on GBNV-infected plants were studied. A significant difference was observed in the developmental period (first instar to adult) between the GBNV-infected and healthy thrips, wherein the developmental period of GBNV-infected thrips was decreased. However, there was no effect on the other parameters such as preadult mortality, adult longevity, and fecundity. Further investigation on a settling and feeding choice assay of T. palmi to GBNV-infected and healthy plants showed that T. palmi preferred GBNV-infected cowpea plants more than the healthy cowpea plants. This preference was also noticed for leaf disks from GBNV-infected cowpea, groundnut, and tomato plants.


Assuntos
Comportamento Alimentar , Tisanópteros/fisiologia , Tisanópteros/virologia , Tospovirus/fisiologia , Animais , Arachis/virologia , Estágios do Ciclo de Vida , Doenças das Plantas/virologia
8.
Phys Chem Chem Phys ; 18(36): 25277-25283, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711597

RESUMO

With the help of first-principle calculations we have proposed a new 2D metal-organic framework (MOF) consisting of a -NH substituted coronene molecule and transition metals. Our study reveals that formation of such crystals is exothermic in nature, i.e. it is an energetically favourable process. The mode of magnetic coupling between the local magnetic moments and hence the overall magnetic moment of the MOF can be tuned by changing the transition metal. Not only the magnetic properties, but also the electronic structure of the MOF can be regulated from half-metal to spin-semiconductor to semimetallic-semiconductor by altering the metal center from Cr to Mn to Fe/Co. Our study also indicates that the change in the ligand structure and its anchoring group is also very effective in tuning the electronic properties of MOFs. The study of transport properties reveals that the half-metallic crystal possesses the maximum value of the spin-filtering efficiency, i.e. 100%.

9.
Arch Virol ; 160(5): 1297-301, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25698103

RESUMO

Few studies have been done on engineered antibodies for diagnosis of tospovirus infections. The present study was undertaken to develop a single-chain variable fragment (scFv) for specific diagnosis of infection by groundnut bud necrosis virus (GBNV), the most prevalent serogroup IV tospovirus in India. Heavy chain (372 nucleotide [nt]) and light chain (363 nt) variable region clones obtained from a hybridoma were used to make an scFv construct that expressed a ~29-kDa protein in E. coli. The scFv specifically detected GBNV in field samples of cowpea, groundnut, mung bean, and tomato, and it did not recognize watermelon bud necrosis virus, a close relative of GBNV belonging to tospovirus serogroup IV. This study for the first time demonstrated the application of a functional scFv against a serogroup-IV tospovirus.


Assuntos
Anticorpos Antivirais , Doenças das Plantas/virologia , Anticorpos de Cadeia Única , Tospovirus/isolamento & purificação , Anticorpos Antivirais/genética , Escherichia coli/genética , Fabaceae/virologia , Expressão Gênica , Testes Imunológicos/métodos , Índia , Solanum lycopersicum/virologia , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Anticorpos de Cadeia Única/genética , Tospovirus/imunologia
10.
Virus Genes ; 50(1): 87-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410052

RESUMO

Leaf curl disease is a serious constraint in tomato production throughout India. Several begomoviruses were reported from different parts of the country; however, identity of begomovirus associated with leaf curl disease in tomato in north-eastern states of India was obscured. In the present study, the complete genome of an isolate (To-Ag-1) of begomovirus was generated from a leaf curl sample collected from Tripura state. However, no DNA-B and betasatellite were detected in the field samples. The genome of To-Ag-1 isolate contained 2,755 nucleotides that shared 94.7 % sequence identity with Tobacco curly shoot virus (TbCSV) and 71.3-90.1 % sequence identity with the other tomato-infecting begomoviruses occurring in the Indian subcontinent. Several inter-specific recombination events among different tomato-infecting begomoviruses from India and intra-specific recombination among different isolates of TbCSV reported from China were observed in the genome of To-Ag-1 isolate. Agroinoculation of the virus alone produced leaf curl symptoms in tomato and Nicotiana benthamiana. However, co-inoculation with a non-cognate betasatellite, Croton yellow vein mosaic betasatellite (CroYVMB) with the TbCSV resulted in increased severity of the symptoms both in tomato and N. benthamiana. Systemic distribution of the TbCSV and CroYVMB was detected in the newly developed leaves of tobacco and tomato, which showed ability of TbCSV to trans-replicate CroYVMB. The present study for the first time provides evidence of occurrence of TbCSV in tomato in north-eastern region of India and showed increased virulence of TbCSV with a non-cognate betasatellite.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , Doenças das Plantas/virologia , Recombinação Genética , Solanum lycopersicum/virologia , Replicação do DNA , DNA Satélite/metabolismo , DNA Viral/química , DNA Viral/genética , Índia , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Análise de Sequência de DNA , Homologia de Sequência , Nicotiana/virologia
11.
Virus Genes ; 51(2): 310-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239043

RESUMO

Frangipani mosaic virus (FrMV) is known to infect frangipani tree (Plumeria rubra f. acutifolia) in India but the virus has not been characterized at genomic level and diagnosis is not available. In the present study, an isolate of FrMV (FrMV-Ind-1) showing greenish mosaic and vein-banding symptoms in P. rubra f. acutifolia in New Delhi was characterized based on host reactions, serology and genome sequence. The virus isolate induced local symptoms on several new experimental host species: Capsicum annuum (chilli), Nicotiana benthamiana, Solanum lycopersicum and S. melongena. N. benthamiana could be used as an efficient propagation host as it developed systemic mottle mosaic symptoms all round the year. The genome of FrMV-Ind-1 was 6643 (JN555602) nucleotides long with genome organization similar to tobamoviruses. The Indian isolate of FrMV shared a very close genome sequence identity (98.3 %) with the lone isolate of FrMV-P from Australia. FrMV-Ind-1 together with FrMV-P formed a new phylogenetic group i.e. Apocynaceae-infecting tobamovirus. The polyclonal antiserum generated through the purified virus preparation was successfully utilized to detect the virus in field samples of frangipani by ELISA. Of the eight different tobamoviruses tested, FrMV-Ind-1 shared distant serological relationships with only cucumber green mottle mosaic virus, tobacco mosaic virus, bell pepper mottle virus and kyuri green mottle mosaic virus. RT-PCR based on coat protein gene primer successfully detected the virus in frangipani plants. This study is the first comprehensive description of FrMV occurring in India.


Assuntos
Apocynaceae/virologia , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA , Tobamovirus/isolamento & purificação , Anticorpos Antivirais/imunologia , Capsicum/virologia , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática/métodos , Índia , Modelos Teóricos , Dados de Sequência Molecular , Filogenia , Homologia de Sequência , Solanum/virologia , Nicotiana/virologia
12.
Phys Chem Chem Phys ; 17(26): 17437-44, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26077649

RESUMO

Here we propose a family of two-dimensional organometallic lattices based on first principle calculations. The proposed lattice is designed by assembling molecular building blocks of a naphthalene molecule functionalized by -NH groups and transition metals which are surrounded by four -NH moieties, creating a square planar geometry. The predicted organometallic lattices (with Fe, Cr and Co) are shown to exhibit half metallicity and therefore this class of materials has great promise for application of spintronics.

13.
Front Plant Sci ; 15: 1376284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807782

RESUMO

Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.

14.
3 Biotech ; 14(1): 8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074288

RESUMO

While conducting field trial of 82 genotypes of bottle gourd at Delhi during 2020-2021, a particular genotype, IC-0262269 was found to be affected by chlorotic curly stunt disease (CCSD). The affected plants were severely stunted and bearing very small chlorotic and crinkle leaves. The disease incidence in the said genotype was as high as 80% among different replicated trial blocks. The application of PCR using a generic primers specific to begomoviruses, as well as species-specific PCR diagnostics to six tomato-infecting begomoviruses: tomato leaf curl New Delhi virus (ToLCNDV), tomato leaf curl Palampur virus (ToLCPalV), tomato leaf curl Joydebpur virus (ToLCJoV), tomato leaf curl Gujrat virus (ToLCGuV), tomato leaf curl Bangalore virus (ToLCBV), and chilli leaf curl virus (ChiLCV) showed that, only ToLCPalV could be detected in the genotype IC-0262269. Following, rolling circle amplification, cloning and sequencing of full-length DNA-A and DNA-B genome of an isolate BoG1-ND from the genotype IC-0262269 revealed association of ToLCPalV with the disease. The successful agro-infection of the cloned genome of BoG1-ND (DNA-A and DNA-B) in the plants of Nicotiana benthamiana and bottle gourd demonstrated that ToLCPalV is the causal begomovirus of CCSD. The study provides the first evidence of the natural occurrence of ToLCPalV in bottle gourd crop and also showed that the bottle gourd genotype IC-0262269 is super-susceptible to ToLCPalV. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03838-y.

15.
Plants (Basel) ; 13(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794484

RESUMO

Expanding possibilities for foreign gene expression in cucurbits, we present a novel approach utilising a bipartite vector system based on the cucumber green mottle mosaic virus (CGMMV) genome. Traditional full-length CGMMV vectors face limitations such as a restricted cargo capacity and unstable foreign gene expression. To address these challenges, we developed two 'deconstructed' CGMMV genomes, DG-1 and DG-2. DG-1 features a major internal deletion, resulting in the loss of crucial replicase enzyme domains, rendering it incapable of self-replication. However, a staggered infiltration of DG-1 in CGMMV-infected plants enabled successful replication and movement, facilitating gene-silencing experiments. Conversely, DG-2 was engineered to enhance replication rates and provide multiple cloning sites. Although it exhibited higher replication rates, DG-2 remained localised within infiltrated tissue, displaying trans-replication and restricted movement. Notably, DG-2 demonstrated utility in expressing GFP, with a peak expression observed between 6 and 10 days post-infiltration. Overall, our bipartite system represents a significant advancement in functional genomics, offering a robust tool for foreign gene expression in Nicotiana benthamiana.

16.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931079

RESUMO

In tropical countries, combating leaf curl disease in hot peppers has become important in improvement programs. Leaf curl disease is caused by whitefly (Bemisia tabaci) transmitted begomoviruses, which mainly include chilli leaf curl virus (ChiLCV). However, multiple begomoviruses have also been found to be associated with this disease. The Capsicum annuum line, DLS-Sel-10, was found to be a tolerant source against this disease during field screening. In this study, we characterized the resistance of DLS-sel-10 against chilli leaf curl virus (ChiLCV) in comparison to the susceptible cultivar Phule Mukta (PM), focusing on the level, stage, and nature of resistance. Comprehensive investigations involved screening of DLS-Sel-10 against the whitefly vector ChiLCV. The putative tolerant line displayed reduced virus infection at the seedling stage, with increasing resistance during vegetative, flowering, and fruiting stages. Both DLS-Sel-10 and PM could be infected with ChiLCV, although DLS-Sel-10 remained symptomless. Insect feeding assays revealed DLS-Sel-10 as a less preferred host for whiteflies compared to PM. In conclusion, DLS-Sel-10 demonstrated tolerance not only to ChiLCV but also served as an unfavorable host for the whitefly vector. The study highlighted an age-dependent increase in tolerance within DLS-Sel-10, showcasing its potential for effective leaf curl disease management in chilli.

17.
Arch Virol ; 158(3): 531-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23096697

RESUMO

Croton yellow vein mosaic virus (CYVMV) is a widely occurring begomovirus in Croton bonplandianum, a common weed in the Indian subcontinent. In this study, CYVMV (genus Begomovirus, family Geminiviridae) was transmitted by whiteflies (Bemisia tabaci) to as many as 35 plant species belonging to 11 families, including many vegetables, tobacco varieties, ornamentals and weeds. CYVMV produced bright yellow vein symptoms in croton, whereas in all the other host species, the virus produced leaf curl symptoms. CYVMV produced leaf curl in 13 tobacco species and 22 cultivars of Nicotiana tabacum and resembled tobacco leaf curl virus (TobLCV) in host reactions. However, CYVMV was distinguished from TobLCV in four differential hosts, Ageratum conyzoides, C. bonplandianum, Euphorbia geniculata and Sonchus bracyotis. The complete genome sequences of four isolates originating from northern, eastern and southern India revealed that a single species of DNA-A and a betasatellite, croton yellow vein mosaic betasatellite (CroYVMB) were associated with the yellow vein mosaic disease of croton. The sequence identity among the isolates of CYVMV DNA-A and CroYVMB occurring in diverse plant species was 91.8-97.9 % and 83.3-100 %, respectively. The CYVMV DNA-A and CroYVMB generated through rolling-circle amplification of the cloned DNAs produced typical symptoms of yellow vein mosaic and leaf curling in croton and tomato, respectively. The progeny virus from both the croton and tomato plants was transmitted successfully by B. tabaci. The present study establishes the etiology of yellow vein mosaic disease of C. bonplandianum and provides molecular evidence that a weed-infecting monopartite begomovirus causes leaf curl in tomato.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Croton/virologia , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Animais , Sequência de Bases , Begomovirus/patogenicidade , DNA Viral/genética , Variação Genética , Genoma Viral , Hemípteros/virologia , Insetos Vetores/virologia , Filogenia , Folhas de Planta/virologia , Plantas Daninhas/virologia , Análise de Sequência de DNA
18.
Virus Genes ; 47(1): 184-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23529301

RESUMO

Wild morning glory (Ipomoea purpurea) was observed to be affected by leaf curl and yellow vein diseases during summer-rainy season of 2009 in New Delhi, India. The virus was experimentally transmitted through whitefly, Bemisia tabaci to I. purpurea that reproduced the two distinct symptoms. Sequence analysis of multiple full-length clones obtained through rolling circle amplification from the leaf curl and yellow vein samples showed 91.8-95.3% sequence identity with Sweet potato leaf curl virus (SPLCV) and the isolates were phylogenetically distinct from those reported from Brazil, China, Japan and USA. Interestingly, two different betasatellites, croton yellow vein mosaic betasatellite and papaya leaf curl betasatellite were found with SPLCV in leaf curl and yellow vein diseases of I. purpurea, respectively. This study is the first report of occurrence of SPLCV in wild morning glory in India. SPLCV was known to infect other species of morning glory; our study revealed that I. purpurea, a new species of morning glory was a natural host of SPLCV. To date, betasatellite associated with SPLCV in Ipomoea spp. is not known. Our study provides evidence of natural association of two different betasatellites with SPLCV in leaf curl and yellow vein diseases of I. purpurea.


Assuntos
Begomovirus/isolamento & purificação , Ipomoea/virologia , Doenças das Plantas/virologia , Vírus Satélites/isolamento & purificação , Begomovirus/classificação , Begomovirus/genética , Índia , Dados de Sequência Molecular , Filogenia , Folhas de Planta/virologia , Vírus Satélites/classificação , Vírus Satélites/genética
19.
Virus Genes ; 46(1): 128-39, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23090833

RESUMO

Leaf curl disease of chilli (LCDC) is a major constraint in production of chilli in the Indian subcontinent. The objective of this study was to identify the begomovirus species occurring in chilli in Sri Lanka, where the LCDC was initially recorded in 1938. The virus samples were collected from the North Central Province, the major chilli growing region in Sri Lanka with a history of epidemic prevalence of LCDC. The virus could be readily transmitted by Bemisia tabaci to chilli, tomato and tobacco, where vein clearing followed by leaf curl developed. The genome analysis of two isolates obtained from two distantly located fields showing 100 % LCDC, revealed that the DNA-A genome (2754 nucleotides) shared 89.5 % sequence identity with each other and 68.80-84.40 % sequence identity with the other begomoviruses occurring in the Indian subcontinent. The closest identity (84.40 %) of the virus isolates was with Tomato leaf curl Sri Lanka virus (ToLCLKV). The results support that a new begomovirus species is affecting chilli in Sri Lanka and the name Chilli leaf curl Sri Lanka virus (ChiLCSLV) is proposed. Recombination analysis indicated that ChiLCSLV was a recombinant virus potentially originated from the begomoviruses prevailing in southern India and Sri Lanka. The genome of betasatellite associated with the two isolates consisted of 1366 and 1371 nucleotides and shared 95.2 % sequence identity with each other and 41.50-73.70 % sequence identity with the other betasatellite species. The results suggest that a new begomovirus betasatellite, Chilli leaf curl Sri Lanka betasatellite is associated with LCDC in Sri Lanka. This study demonstrates a new species of begomovirus and betasatellite complex is occurring in chilli in Sri Lanka and further shows that diverse begomovirus species are affecting chilli production in the Indian subcontinent.


Assuntos
Begomovirus/genética , Capsicum/virologia , DNA Satélite/genética , Doenças das Plantas/virologia , Animais , Begomovirus/isolamento & purificação , Análise por Conglomerados , DNA Satélite/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Transmissão de Doença Infecciosa , Hemípteros/virologia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sri Lanka
20.
Phys Chem Chem Phys ; 15(48): 21001-6, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24217214

RESUMO

By using state of the art theoretical methods we have predicted a new two-dimensional (2-D) carbon allotrope. This new planar carbon framework is made of hexagons, octagons and pentagons and hence named as HOP graphene (HOPG). The possibility of existence of HOPG is evident from its dynamical stability as confirmed by phonon-mode analysis and also from an energetic point of view since it is energetically more favorable than recently synthesized graphdiyne. The band structure shows the metallic behaviour of this new form of carbon allotrope. We also explored the electronic structure and transport properties of a 1-D derivative (nanoribbon) of HOPG. Most of the nanoribbons exhibit multiple negative differential resistance (NDR) behaviour with high peak to valley ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA