RESUMO
Epithelial cells provide a first line of immune defense by maintaining barrier function, orchestrating mucociliary clearance, secreting antimicrobial molecules, and generating sentinel signals to both activate innate immune cells and shape adaptive immunity. Although epithelial alarmins play a particularly important role in the initiation of type 2 inflammation in response to allergens, the mechanisms by which epithelial cells sense the environment and regulate the generation and release of alarmins have been poorly understood. Recent studies have identified new sensors and signaling pathways used by barrier epithelial cells to elicit type 2 inflammation, including a novel pathway for the release of interleukin-33 from the nucleus that depends on apoptotic signaling. These recent findings have implications in the development of allergic diseases, from atopic eczema to food allergy, rhinitis, and asthma.
RESUMO
Introduction: Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa with distinct endotypes including type 2 (T2) high eosinophilic CRS with nasal polyps (eCRSwNP), T2 low non-eosinophilic CRS with nasal polyps (neCRSwNP), and CRS without nasal polyps (CRSsNP). Methods: Given the heterogeneity of disease, we hypothesized that assessment of single cell RNA sequencing (scRNA-seq) across this spectrum of disease would reveal connections between infiltrating and activated immune cells and the epithelial and stromal populations that reside in sinonasal tissue. Results: Here we find increased expression of genes encoding glycolytic enzymes in epithelial cells (EpCs), stromal cells, and memory T-cell subsets from patients with eCRSwNP, as compared to healthy controls. In basal EpCs, this is associated with a program of cell motility and Rho GTPase effector expression. Across both stromal and immune subsets, glycolytic programming was associated with extracellular matrix interactions, proteoglycan generation, and collagen formation. Furthermore, we report increased cell-cell interactions between EpCs and stromal/immune cells in eCRSwNP compared to healthy control tissue, and we nominate candidate receptor-ligand pairs that may drive tissue remodeling. Discussion: These findings support a role for glycolytic reprograming in T2-elicited tissue remodeling and implicate increased cellular crosstalk in eCRSwNP.
Assuntos
Pólipos Nasais , Rinossinusite , Humanos , Células Epiteliais , Movimento Celular , Doença Crônica , GlicóliseRESUMO
Immunogenetic studies have shown that specific HLA-B residues (67, 70, 97, and 156) mediate the impact of HLA class I on HIV infection, but the molecular basis is not well understood. Here we evaluate the function of these residues within the protective HLA-B∗5701 allele. While mutation of Met67, Ser70, and Leu156 disrupt CD8+ T cell recognition, substitution of Val97 had no significant impact. Thermal denaturation of HLA-B∗5701-peptide complexes revealed that Met67 and Leu156 maintain HLA-peptide stability, while Ser70 and Leu156 facilitate T cell receptor (TCR) interactions. Analyses of existing structures and structural models suggested that Val97 mediates HLA-peptide binding to inhibitory KIR3DL1 molecules, which was confirmed by experimental assays. These data thereby demonstrate that the genetic basis by which host immunity impacts HIV outcomes occurs by modulating HLA-B-peptide stability and conformation for interaction with TCR and killer immunoglobulin receptor (KIR) molecules. Moreover, they indicate a key role for epitope specificity and HLA-KIR interactions to HIV control.
Assuntos
Antígenos HLA-B , Ligação Proteica , Receptores de Antígenos de Linfócitos T , Humanos , Antígenos HLA-B/química , Antígenos HLA-B/metabolismo , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , HIV-1/imunologia , HIV-1/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Modelos Moleculares , Receptores KIR3DL1/metabolismo , Receptores KIR3DL1/química , Receptores KIR3DL1/genética , Peptídeos/química , Peptídeos/metabolismo , Sítios de Ligação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Polimorfismo Genético , Estabilidade ProteicaRESUMO
Background: The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective: We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods: Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results: Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions: Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.