Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Spinal Cord Med ; 43(5): 594-606, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30768378

RESUMO

Objective: Shoulder pain after spinal cord injury (SCI) is attributed to increased mobility demands on the arms and negatively impacts independence and quality of life. Repetitive superior and posterior shoulder joint forces produced during traditional wheelchair (WC) locomotion can result in subacromial impingement if unopposed, as with muscular fatigue or weakness. ROWHEELS® (RW), geared rear wheels that produce forward WC movement with backward rim pulling, could alter these forces. Design: Cross sectional. Setting: Research laboratory at a rehabilitation hospital. Participants: Ten manual WC users with paraplegia. Outcome measures: Propulsion characteristics and right upper extremity/trunk kinematics and shoulder muscle activity were collected during ergometer propulsion: (1) self-selected free speed reverse propulsion with RW, (2) matched-speed reverse (rSW), and (3) forward propulsion (fSW) with instrumented Smartwheels (SW). Inverse dynamics using right-side SW rim kinetics and kinematics compared shoulder kinetics during rSW and fSW. Results: Free propulsion velocity, cycle distance and cadence were similar during RW, rSW and fSW. Overall shoulder motion was similar except that peak shoulder extension was significantly reduced in both RW and rSW versus fSW. Anteriorly and inferiorly directed SW rim forces were decreased during rSW versus fSW propulsion, but posteriorly and superiorly directed rim forces were significantly greater. Superior and posterior shoulder joint forces and flexor, adductor, and external rotation moments were significantly less during rSW, without a significant difference in net shoulder forces and moments. Traditional propulsive-phase muscle activity was significantly reduced and recovery-phase muscle activity was increased during reverse propulsion. Conclusion: These results suggest that reverse propulsion may redirect shoulder demands and prevent subacromial impingement, thereby preventing injury and preserving independent mobility for individuals with paraplegia.


Assuntos
Articulação do Ombro , Traumatismos da Medula Espinal , Cadeiras de Rodas , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Cinética , Paraplegia/etiologia , Qualidade de Vida , Ombro , Traumatismos da Medula Espinal/complicações
2.
Assist Technol ; 29(4): 202-209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27687753

RESUMO

This study demonstrated the feasibility of a device for monitoring pressure relief maneuvers and physical activity for wheelchair users. The device counts the number of wheel pushes based on wheelchair acceleration and measures pressure relief maneuvers using a seat sensor consisting of three force sensing resistors (FSRs). To establish the feasibility of the seat sensor for the detection of pressure relief maneuvers, 10 wheelchair users and 10 non-disabled controls completed a series of wheelchair depression raises, forward trunk leans, and lateral trunk leans. The seat sensor was placed underneath the user's seat cushion. To establish the feasibility of wheel push counting, 10 full-time wheelchair users navigated a flat 50-m outdoor track and a 100-m outdoor obstacle course during self-propulsion (e.g., wheel pushes) and during assisted-propulsion (e.g., no wheel pushes). Of the 240 performed pressure relief, 225 were properly classified by the seat sensor (accuracy: 94%, sensitivity: 96%, specificity: 80%). Sensitivity was highest for depression raises (98%) and lowest for front lean maneuvers (80%). The wheelchair activity monitor measured 2,112 pushes during the self-propulsion trials compared to 2,162 pushes measured with the instrumented push-rim (97.7%). During assisted-propulsion trials, there were 477 incorrectly identified pushes (8.0 per trial).


Assuntos
Exercício Físico/fisiologia , Monitorização Fisiológica/instrumentação , Telecomunicações/instrumentação , Cadeiras de Rodas , Acelerometria/instrumentação , Adulto , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade
3.
Artigo em Inglês | MEDLINE | ID: mdl-26442253

RESUMO

Car transfers and wheelchair (WC) loading are crucial for independent community participation in persons with complete paraplegia from spinal cord injury, but are complex, physically demanding, and known to provoke shoulder pain. This study aimed to describe techniques and factors influencing car transfer and WC loading for individuals with paraplegia driving their own vehicles and using their personal WCs. Sedans were the most common vehicle driven (59%). Just over half (52%) of drivers place their right leg only into the vehicle prior to transfer. Overall, the leading hand was most frequently placed on the driver's seat (66%) prior to transfer and the trailing hand was most often place on the WC seat (48%). Vehicle height influenced leading hand placement but not leg placement such that drivers of higher profile vehicles were more likely to place their hand on the driver's seat than those who drove sedans. Body lift time was negatively correlated with level of injury and age and positively correlated with vehicle height and shoulder abduction strength. Drivers who transferred with their leading hand on the steering wheel had significantly higher levels of shoulder pain than those who placed their hand on the driver's seat or overhead. The majority of participants used both hands (62%) to load their WC frame, and overall, most loaded their frame into the back (62%) vs. the front seat. Sedan drivers were more likely to load their frame into the front seat than drivers of higher profile vehicles (53 vs. 17%). Average time to load the WC frame (10.7 s) was 20% of the total WC loading time and was not related to shoulder strength, frame weight, or demographic characteristics. Those who loaded their WC frame into the back seat had significantly weaker right shoulder internal rotators. Understanding car transfers and WC loading in independent drivers is crucial to prevent shoulder pain and injury and preserve community participation.

4.
J Rehabil Med ; 41(6): 459-66, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19479159

RESUMO

OBJECTIVE: Shocks and vibrations experienced while using a hand-rim wheelchair can contribute to discomfort, fatigue and injury. The aim of this study was to compare the seat forces and head accelerations experienced by manual wheelchair users during independent curb descent landings in a standard and 3 suspension-type rigid-frame wheelchairs. EXPERIMENTAL: repeated measures analysis of variance. PARTICIPANTS: Eight men with paraplegia due to spinal cord injury. METHODS: Participants performed independently-controlled curb descent maneuvers with 4 wheelchairs. The seat force and head accelerations were compared across wheelchairs. RESULTS: The suspension-type wheelchairs decreased the seat force and head accelerations by significantly (p < 0.05) extending the force rise time. Also, the seat force and head accelerations were inversely related to the seat force at initial contact. The monoshock-based suspension wheelchairs showed the least seat force and longest force rise time. CONCLUSION: Suspension systems result in softer landings by attenuating the magnitude and time duration of the force and reducing head accelerations. Hand-rim wheelchair users can also soften landings by utilizing a "pull-up" strategy that reduces the force and head accelerations. Softer landings can contribute to improved ride quality.


Assuntos
Traumatismos da Medula Espinal/reabilitação , Cadeiras de Rodas , Aceleração , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Masculino , Sistemas Homem-Máquina , Paraplegia/fisiopatologia , Paraplegia/reabilitação , Esforço Físico , Traumatismos da Medula Espinal/fisiopatologia , Estresse Fisiológico , Vibração/efeitos adversos , Cadeiras de Rodas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA