RESUMO
The conventional analysis of pesticide residues in analytical commodities, such as tobacco and tobacco products is a labor intensive procedure, since it is necessary to cover a wide range of different chemicals, using a single procedure. Standard analysis methods include extensive sample pretreatment (with solvent extraction and partitioning phases) and determination by GC and HPLC to achieve the necessary selectivity and sensitivity for the different classes of compounds under detection. As a consequence, current methods of analysis provide a limited sample capacity. In the present study, we report on the development of a novel cell biosensor for detecting organophosphate and carbamate pesticide residues in tobacco. The sensor is based on neuroblastoma N2a cells and the measurement of changes of the cell membrane potential, according to the working principle of the Bioelectric Recognition Assay (BERA). The presence of pesticide residues is detected by the degree of inhibition of acetylcholine esterase (AChE). The sensor instantly responded to both the organophoshate pesticide chlorpyriphos and the carbamate carbaryl in a concentration-dependent pattern, being able to detect one part per billion (1 ppb). Additionally, tobacco leaf samples (in blended dry form) were analyzed with both the novel biosensor and conventional methods, according to a double-blind protocol. Pesticide residues in tobacco samples caused a considerable cell membrane hyperpolarization to neuroblastoma cells immobilized in the sensor, as indicated by the increase of the negative sensor potential, which was clearly distinguishable from the sensor's response against pesticide-free control samples. The observed response was quite reproducible, with an average variation of +5,6%. Fluorescence microscopy observations showed that treatment of the cells with either chlorpyrifos or carbaryl was associated with increased [Ca²+]cyt . The novel biosensor offers fresh perspectives for ultra-rapid, sensitive and low-cost monitoring of pesticide residues in tobacco as well as other food and agricultural commodities.
RESUMO
A new polymerase chain reaction (PCR) assay for rapid diagnosis of contagious ecthyma was designed and applied to 21 clinical samples from Greece. This assay, which detects a highly conserved gene from the parapox genome, was evaluated for its sensitivity and specificity in order to be considered as a useful diagnostic tool. A comparative study with two published PCR protocols one using primers PPP1-PPP3, PPP1-PPP4 which targets putative virion envelope gene B2L and the other using VIR1-VIR2 primers which amplifies ORF virus interferon resistant (VIR) gene, as well as cell culture virus neutralization assay was carried out. All samples tested were amplified successfully with the PCR protocol established in the laboratory. The combination of primers PPP1-PPP3 and PPP1-PPP4 in a semi-nested PCR gave a positive result in 20 of 21 samples while primers VIR1-VIR2 failed to amplify successfully 7 of 21 samples. The diagnostic value of parapox viral DNA amplification was also compared with the results of virus isolation by cell culture and was positive in three samples that the virus isolation was obtained.
Assuntos
Ectima Contagioso/diagnóstico , Reação em Cadeia da Polimerase/métodos , Poxviridae/isolamento & purificação , Animais , Primers do DNA , Farmacorresistência Viral , Ectima Contagioso/virologia , Grécia , Interferons/farmacologia , Fases de Leitura Aberta/genética , Poxviridae/efeitos dos fármacos , Poxviridae/genética , Sensibilidade e Especificidade , Ovinos , Proteínas do Envelope Viral/genéticaRESUMO
Thirteen orf virus isolates obtained during the time period between 1995 and 2004 from crusted scab lesions of nine sheep and four goats from different geographical areas of Greece and Italy with suspected contagious ecthyma infection were analyzed. DNA of all isolates was successfully amplified by PCR with the primers 045F-045R and identified them as parapox virus. Partial DNA sequence of orf virus interferon resistant (VIR) gene, phylogenetic analysis of the available isolates and amino acid comparison of the interferon resistance protein encoded by this genomic region was carried out. According to the results of the present report a precise characterisation of the genomic region studied might provide evidence for the genetic variation and movement of the circulating orf virus strains.
Assuntos
DNA Viral/química , Ectima Contagioso/virologia , Doenças das Cabras/virologia , Vírus do Orf/classificação , Filogenia , Sequência de Aminoácidos , Animais , Ectima Contagioso/diagnóstico , Doenças das Cabras/diagnóstico , Cabras , Grécia , Itália , Dados de Sequência Molecular , Vírus do Orf/genética , Alinhamento de Sequência , Ovinos , Especificidade da EspécieRESUMO
The sequence of the genome segment 10 (Seg-10) encoding NS3/NS3A was determined for 19 field isolates of Bluetongue virus (BTV) of serotypes BTV-1, BTV-4, BTV-9 and BTV-16, derived from epizootics in Greece in the years 1979 and 1998-2001. The aim of the study was to define the molecular epidemiology of the virus in this part of the Mediterranean basin. On the basis of the Seg-10 sequences, the isolates grouped into two distinct phylogenetic clusters. These were Greek group I of solely serotype BTV-4 viruses, and Greek group II of serotypes BTV-1, BTV-9 and BTV-16 viruses. The isolates in Greek group I clustered with the Corsican and Tunisian BTV-2 serotypes and US group II strains of BTV-10 and BTV-13 serotypes, while those in Greek group II with Chinese, Indian and Australian viruses of different serotypes suggesting that viruses derived from two distinct ecosystems have caused BT incursions in Greece over the last 25 years. The NS3/NS3A sequences of most of the BTV-4 isolates were identical, irrespective of the year of isolation, geographical location and host species or tissue origin. Maximum of 15-16% nucleic acid sequence variation, but only 4% deduced amino acid substitution, were observed between groups I and II. Furthermore, the clustering of the NS3/NS3A sequences was independent of the viral serotype, indicating the occurrence of genome segment reassortment during the course of evolution of the viruses.
Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Bluetongue/epidemiologia , Bluetongue/virologia , Epidemiologia Molecular , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Bovinos/virologia , Linhagem Celular , Cricetinae , DNA Viral/análise , Evolução Molecular , Cabras/virologia , Grécia/epidemiologia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Ovinos/virologiaRESUMO
Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979-2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an 'eastern' (BTV-9, -16 and -1) and a 'western' (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.
Assuntos
Vírus Bluetongue/genética , Proteínas do Capsídeo/genética , Evolução Molecular , Genes Virais , Filogenia , Sequência de Bases , Vírus Bluetongue/classificação , Proteínas do Capsídeo/classificação , Primers do DNA , Funções Verossimilhança , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido NucleicoRESUMO
A novel concept for the assay of viral antigens is described. The methodological approach is based on a membrane-engineering process involving the electroinsertion of virus-specific antibodies in the membranes of fibroblast cells. As a representative example, Vero fibroblasts were engineered with antibodies against Cucumber mosaic virus (CMV) and used for the construction of an ultra-sensitive miniature cell biosensor system. The attachment of a homologous virus triggered specific changes to the cell membrane potential that were measured by appropriate microelectrodes, according to the principle of the bioelectric recognition assay (BERA). No change in the membrane potential was observed upon cell contact with the heterologous cucumber green mottle mosaic virus (CGMMV). Fluorescence microscopy observations showed that attachment of CMV particles to membrane-engineered cells was associated with membrane hyperpolarization and increased [Ca(2+)](cyt). In an additional field-based application, we were able to detect CMV-infected tobacco plants at an essentially 100% level of accuracy.