Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101902, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390347

RESUMO

Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, as well as the accumulation of intraneuronal proteinaceous inclusions known as Lewy bodies and Lewy neurites. The major protein component of Lewy inclusions is the intrinsically disordered protein α-synuclein (α-Syn), which can adopt diverse amyloid structures. Different conformational strains of α-Syn have been proposed to be related to the onset of distinct synucleinopathies; however, how specific amyloid fibrils cause distinctive pathological traits is not clear. Here, we generated three different α-Syn amyloid conformations at different pH and salt concentrations and analyzed the activity of SynuClean-D (SC-D), a small aromatic molecule, on these strains. We show that incubation of α-Syn with SC-D reduced the formation of aggregates and the seeded polymerization of α-Syn in all cases. Moreover, we found that SC-D exhibited a general fibril disaggregation activity. Finally, we demonstrate that treatment with SC-D also reduced strain-specific intracellular accumulation of phosphorylated α-Syn inclusions. Taken together, we conclude that SC-D may be a promising hit compound to inhibit polymorphic α-Syn aggregation.


Assuntos
Fármacos Neuroprotetores/farmacologia , Doença de Parkinson , Piridinas/farmacologia , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Corpos de Lewy/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Polimerização , Agregação Patológica de Proteínas/tratamento farmacológico , Sinucleinopatias/tratamento farmacológico , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
2.
Database (Oxford) ; 20232023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011719

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, yet effective treatments able to stop or delay disease progression remain elusive. The aggregation of a presynaptic protein, α-synuclein (aSyn), is the primary neurological hallmark of PD and, thus, a promising target for therapeutic intervention. However, the lack of consensus on the molecular properties required to specifically bind the toxic species formed during aSyn aggregation has hindered the development of therapeutic molecules. Recently, we defined and experimentally validated a peptide architecture that demonstrated high affinity and selectivity in binding to aSyn toxic oligomers and fibrils, effectively preventing aSyn pathogenic aggregation. Human peptides with such properties may have neuroprotective activities and hold a huge therapeutic interest. Driven by this idea, here, we developed a discriminative algorithm for the screening of human endogenous neuropeptides, antimicrobial peptides and diet-derived bioactive peptides with the potential to inhibit aSyn aggregation. We identified over 100 unique biogenic peptide candidates and ensembled a comprehensive database (aSynPEP-DB) that collects their physicochemical features, source datasets and additional therapeutic-relevant information, including their sites of expression and associated pathways. Besides, we provide access to the discriminative algorithm to extend its application to the screening of artificial peptides or new peptide datasets. aSynPEP-DB is a unique repository of peptides with the potential to modulate aSyn aggregation, serving as a platform for the identification of previously unexplored therapeutic agents. Database URL:  https://asynpepdb.ppmclab.com/.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Peptídeos
3.
Front Plant Sci ; 13: 1060410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726678

RESUMO

Prion-like domains (PrLDs) are intrinsically disordered regions (IDRs) of low sequence complexity with a similar composition to yeast prion domains. PrLDs-containing proteins have been involved in different organisms' regulatory processes. Regions of moderate amyloid propensity within IDRs have been shown to assemble autonomously into amyloid fibrils. These sequences tend to be rich in polar amino acids and often escape from the detection of classical bioinformatics screenings that look for highly aggregation-prone hydrophobic sequence stretches. We defined them as cryptic amyloidogenic regions (CARs) and recently developed an integrated database that collects thousands of predicted CARs in IDRs. CARs seem to be evolutionary conserved among disordered regions because of their potential to stablish functional contacts with other biomolecules. Here we have focused on identifying and characterizing CARs in prion-like proteins (pCARs) from plants, a lineage that has been poorly studied in comparison with other prionomes. We confirmed the intrinsic amyloid potential for a selected pCAR from Arabidopsis thaliana and explored functional enrichments and compositional bias of pCARs in plant prion-like proteins.

4.
Front Mol Biosci ; 9: 882160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898309

RESUMO

Proteome-wide analyses suggest that most globular proteins contain at least one amyloidogenic region, whereas these aggregation-prone segments are thought to be underrepresented in intrinsically disordered proteins (IDPs). In recent work, we reported that intrinsically disordered regions (IDRs) indeed sustain a significant amyloid load in the form of cryptic amyloidogenic regions (CARs). CARs are widespread in IDRs, but they are necessarily exposed to solvent, and thus they should be more polar and have a milder aggregation potential than conventional amyloid regions protected inside globular proteins. CARs are connected with IDPs function and, in particular, with the establishment of protein-protein interactions through their IDRs. However, their presence also appears associated with pathologies like cancer or Alzheimer's disease. Given the relevance of CARs for both IDPs function and malfunction, we developed CARs-DB, a database containing precomputed predictions for all CARs present in the IDPs deposited in the DisProt database. This web tool allows for the fast and comprehensive exploration of previously unnoticed amyloidogenic regions embedded within IDRs sequences and might turn helpful in identifying disordered interacting regions. It contains >8,900 unique CARs identified in a total of 1711 IDRs. CARs-DB is freely available for users and can be accessed at http://carsdb.ppmclab.com. To validate CARs-DB, we demonstrate that two previously undescribed CARs selected from the database display full amyloidogenic potential. Overall, CARs-DB allows easy access to a previously unexplored amyloid sequence space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA