Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pharm Res ; 40(3): 721-733, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36697932

RESUMO

PURPOSE: During biopharmaceutical drug manufacturing, storage, and distribution, proteins in both liquid and solid dosage forms go through various processes that could lead to protein aggregation. The extent of aggregation in the sub-micron range can be measured by analyzing a liquid or post-reconstituted powder sample using Micro-Flow Imaging (MFI) technique. MFI is widely used in biopharmaceutical industries due to its high sensitivity in detecting and analyzing particle size distribution. However, the MFI's sensitivity to various factors makes accurate measurement challenging. Therefore, in light of the inherent variability of the method, this work aims to explore the capabilities of an adopted coupled sensitivity analysis and machine learning algorithm to quantify the influencing factors on the formed sub-visible particles and method variability. METHODS: The proposed algorithm consists of two interconnected components, namely a surrogate model with a neural network and a sensitivity analyzer. A machine learning tool based on artificial neural networks (ANN) is constructed with MFI data. The best fit with an optimized configuration is found. Sensitivity and uncertainty analysis is performed using this network as the surrogate model to understand the impacts of input parameters on MFI data. RESULTS: Results reveal the most impactful reconstitution preparation factors and others that are masked by the instrument variabilities. It is shown that instrument inaccuracy is a function of size category, with higher variabilities associated with larger size ranges. CONCLUSION: Utilizing this tool while assessing the sensitivity of outputs to various parameters, measurement variabilities for analytical characterization tests can be quantified.


Assuntos
Produtos Biológicos , Proteínas , Incerteza , Diagnóstico por Imagem , Redes Neurais de Computação , Tamanho da Partícula
2.
J Pharm Sci ; 113(4): 974-981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37802368

RESUMO

To ensure the high quality of biopharmaceutical products, it is imperative to implement specialized unit operations that effectively safeguard the structural integrity of large molecules. While lyophilization has long been a reliable process, spray drying has recently garnered attention for its particle engineering capabilities for the pulmonary route of administration. However, maintaining the integrity of biologics during spray drying remains a challenge. To address this issue, we explored a novel dehydration system based on aerosol-assisted room-temperature drying of biological formulations recently developed at Princeton University, called Rapid Room-Temperature Aerosol Dehydration. We compared the quality attributes of the bulk powder of biopharmaceutical products manufactured using this drying technology with that of traditional spray drying. For all the fragment antigen-binding formulations tested, in terms of protein degradation and aerosol performance, we were able to achieve a better product quality using this drying technology compared to the spray drying technique. We also highlight areas for improvement in future prototypes and prospective commercial versions of the system. Overall, the offered dehydration system holds potential for improving the quality and diversity of biopharmaceutical products and may pave the way for more efficient and effective production methods in the biopharma industry.


Assuntos
Produtos Biológicos , Secagem por Atomização , Humanos , Temperatura , Desidratação , Estudos Prospectivos , Aerossóis/química , Liofilização/métodos , Tecnologia , Pós/química , Tamanho da Partícula , Administração por Inalação
3.
Biochemistry ; 52(19): 3376-89, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23594236

RESUMO

This work examines the effect of three anions from the Hofmeister series (sulfate, chloride, and thiocyanate) on the conformational stability and aggregation rate of an IgG1 monoclonal antibody (mAb) and corresponding changes in the mAb's backbone flexibility (at pH 6 and 25 °C). Compared to a 0.1 M NaCl control, thiocyanate (0.5 M) decreased the melting temperatures (Tm) for three observed conformational transitions within the mAb by 6-9 °C, as measured by differential scanning calorimetry. Thiocyanate also accelerated the rate of monomer loss at 40 °C over 12 months, as monitored by size exclusion chromatography. Backbone flexibility, as measured via H/D exchange mass spectrometry, increased in two segments in the CH2 domain with more subtle changes across several additional regions. Chloride (0.5 M) caused slight increases in the Tm values, small changes in aggregation rate, and minimal yet consistent decreases in flexibility across various domains with larger effects noted within the VL, CH1, and CH3 domains. In contrast, 0.5 M sulfate increased Tm values, had small stabilizing influences on aggregate formation over time, yet substantially increased the flexibility of two specific regions in the CH1 and VL domains. While thiocyanate-induced conformational destabilization of the mAb correlated with increased local flexibility of specific regions in the CH2 domain (especially residues 241-251 in the heavy chain), the stabilizing anion sulfate did not affect these CH2 regions.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Ânions , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Sais , Termodinâmica
4.
Mol Pharm ; 10(1): 297-306, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23148513

RESUMO

The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH(2) peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering iv or sc injections of IDAC in a prophylactic or a vaccinelike dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccinelike manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-3-treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-3-treated mice. In conclusion, the I-domain can effectively deliver antigenic peptides in a vaccinelike or prophylactic manner for inducing immunotolerance in the EAE mouse model.


Assuntos
Antígenos/imunologia , Antígenos/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Imunoconjugados/farmacologia , Peptídeos/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Diferenciação Celular/imunologia , Feminino , Imunoconjugados/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Camundongos , Proteína Proteolipídica de Mielina/imunologia , Linfócitos T Reguladores/imunologia
5.
Biologicals ; 41(3): 131-47, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23146362

RESUMO

The successful implementation of process and product changes for a therapeutic protein drug, both during clinical development and after commercialization, requires a detailed evaluation of their impact on the protein's structure and biological functionality. This analysis is called a comparability exercise and includes a data driven assessment of biochemical equivalence and biological characterization using a cadre of analytical methodologies. This review focuses on describing analytical results and lessons learned from selected published therapeutic protein comparability case studies both for bulk drug substance and final drug product. An overview of the currently available analytical methodologies typically used is presented as well as a discussion of new emerging analytical techniques. The potential utility of several novel analytical approaches to comparability studies is discussed including distribution and stability of protein drugs in vivo, and enhanced evaluation of higher-order protein structure in actual formulations using hydrogen/deuterium exchange mass spectrometry, two-dimensional nuclear magnetic resonance fingerprinting or empirical phase diagrams. In addition, new methods for detecting and characterizing protein aggregates and particles are presented as these degradants are of current industry-wide concern. The critical role that analytical methodologies play in elucidating the structure-function relationships for therapeutic protein products during the overall assessment of comparability is discussed.


Assuntos
Preparações Farmacêuticas/química , Conformação Proteica , Proteínas/química , Avaliação de Medicamentos , Estabilidade de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Preparações Farmacêuticas/normas , Estabilidade Proteica , Proteínas/farmacocinética , Proteínas/uso terapêutico
6.
Med Res Rev ; 32(4): 727-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21433035

RESUMO

In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a "bull's eye"-like formation of the immunological synapse (IS) at the T-cell-APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from T(H)1 to T(reg) and/or T(H)2 phenotypes, leading to tolerance.


Assuntos
Doenças Autoimunes/imunologia , Antígenos CD4/imunologia , Sinapses Imunológicas/metabolismo , Animais , Células Apresentadoras de Antígenos/metabolismo , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Antígenos CD4/metabolismo , Colágeno Tipo II/metabolismo , Glutamato Descarboxilase/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Modelos Biológicos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Bioconjug Chem ; 23(3): 509-17, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22369638

RESUMO

The objectives of this work are to characterize the identity of I-domain-antigen conjugate (IDAC) and to evaluate the in vivo efficacy of IDAC in suppressing experimental autoimmune encephalomyelitis (EAE) in mouse model. The hypothesis is that the I-domain delivers PLP(139-151) peptides to antigen-presenting cells (APC) and alters the immune system by simultaneously binding to ICAM-1 and MHC-II, blocking immunological synapse formation. IDAC was synthesized by derivatizing the lysine residues with maleimide groups followed by conjugation with PLP-Cys-OH peptide. Conjugation with PLP peptide does not alter the secondary structure of the protein as determined by CD. IDAC suppresses the progression of EAE, while I-domain and GMB-I-domain could only delay the onset of EAE. As a positive control, Ac-PLP-BPI-NH(2)-2 can effectively suppress the progress of EAE. The number of conjugation sites and the sites of conjugations in IDAC were determined using tryptic digest followed by LC-MS analysis. In conclusion, conjugation of I-domain with an antigenic peptide (PLP) resulted in an active molecule to suppress EAE in vivo.


Assuntos
Antígenos/administração & dosagem , Encefalomielite Autoimune Experimental/prevenção & controle , Peptídeos/administração & dosagem , Sequência de Aminoácidos , Animais , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Feminino , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Espectrometria de Massas por Ionização por Electrospray , Difração de Raios X
8.
Bioconjug Chem ; 22(7): 1330-6, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21612301

RESUMO

Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.


Assuntos
Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Antígeno-1 Associado à Função Linfocitária/química , Rodaminas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Espectrometria de Massas por Ionização por Electrospray/economia
9.
Mol Pharm ; 7(1): 146-55, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19883077

RESUMO

Leukocyte function associated antigen-1 (LFA-1) is a primary cell adhesion molecule of leukocytes required for mediating cellular transmigration into sites of inflammation via the vascular endothelium. A cyclic peptide, cIBR, possesses high affinity for LFA-1, and conjugation to the surface of poly(DL-lactic-co-glycolic acid) nanoparticles can specifically target and deliver the encapsulated agents to T cells expressing LFA-1. The kinetics of targeted nanoparticle uptake by acute lymphoblastic leukemia T cells was investigated by flow cytometry and microscopy and compared to untargeted nanoparticles. The specificity of targeted nanoparticles binding to the LFA-1 integrin was demonstrated by competitive inhibition using free cIBR peptide or using the I domain of LFA-1 to inhibit the binding of targeted nanoparticles. The uptake of targeted nanoparticles was concentration and energy dependent. The cIBR-conjugated nanoparticles did not appear to localize with lysosomes whereas untargeted nanoparticles were detected in lysosomes in 6 h and steadily accumulated in lysosomes for 24 h. Finally, T-cell adhesion to epithelial cells was inhibited by cIBR nanoparticles. Thus, nanoparticles displaying the cIBR ligand may offer a useful targeted drug delivery system as an alternative treatment of inflammatory diseases involving transmigration of leukocytes.


Assuntos
Antígeno-1 Associado à Função Linfocitária/metabolismo , Peptídeos Cíclicos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Linfócitos T/metabolismo , Transporte Biológico Ativo , Adesão Celular , Agregação Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Ácido Láctico , Ligantes , Lisossomos/metabolismo , Microscopia de Fluorescência , Nanopartículas/química , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/patologia , Temperatura
10.
J Pharm Sci ; 109(1): 220-232, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31288034

RESUMO

Bispecific antibodies containing single-chain variable fragment (scFv) appended to immunoglobulins G offer unique development challenges. Here, we describe the stability of a novel bispecific format, BiS5, where the scFv is tethered to the CH3 domain. BiS5 showed an improved conformational and chemical stability compared with that of BiS4 in which the scFv is appended in the hinge region between the Fab and Fc. By switching the location of the scFv from hinge region to the CH3, there was an improved stabilization of CH2 and scFv domains. Interestingly, no noticeable impact was observed on the conformational stability of CH3 and Fab domains. BiS4 and BiS5 showed different aggregation and fragmentation rates under accelerated temperature stress conditions. BiS4 showed higher fragmentation rates compared with BiS5 likely owing to fragmentation in the linker region on either side of the scFv while BiS5 is more resistant toward fragmentation owing to tethering of scFv to the CH3 domain at its N and C terminus. In conclusion, the location of scFv affects both aggregation and fragmentation kinetics. These insights into the molecular structure and correlations with their physical and chemical stability will help formulation development of these novel bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/química , Química Farmacêutica/métodos , Imunoglobulina G/química , Anticorpos de Cadeia Única/química , Anticorpos Biespecíficos/metabolismo , Cromatografia em Gel/métodos , Estabilidade de Medicamentos , Humanos , Imunoglobulina G/metabolismo , Agregados Proteicos/fisiologia , Conformação Proteica , Anticorpos de Cadeia Única/metabolismo
11.
J Pharm Sci ; 106(5): 1197-1210, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28088457

RESUMO

This study describes the physicochemical characterization, stabilization, and formulation design of SM4-AC, an acrylodan-labeled glucose/galactose-binding protein for use in a continuous glucose monitoring device. The physical stability profile of SM4-AC as a function of pH and temperature was monitored using a combination of biophysical techniques and the resulting physical stability profile was visualized using an empirical phase diagram. Forced degradation chemical stability studies (Asn deamidation, Met oxidation) of SM4-AC were performed using a combination of capillary isoelectric focusing, peptide mapping, and reversed-phase HPLC. Differential scanning fluorimetry was then employed to screen various pharmaceutical excipients for their ability to physically stabilize SM4-AC. An optimized formulation of 20% sucrose and 2.5 mM calcium chloride in 10 mM MES buffer, 150 mM NaCl at pH 6.0 increased the conformational stability of SM4-AC by 15°C. Accelerated and real-time stability studies were setup to compare the SM4-AC protein's physicochemical stability and glucose-binding activity in 2 formulations for up to 12 months. SM4-AC in an optimized formulation (vs the original formulation) showed improved physical stability, and similar chemical stability and glucose binding activity profiles during storage up to 52 weeks at various temperatures.


Assuntos
2-Naftilamina/análogos & derivados , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Desenho de Fármacos , Glucose/química , Glucose/metabolismo , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Dicroísmo Circular/métodos , Estabilidade de Medicamentos , Ligação Proteica/fisiologia
12.
J Pharm Sci ; 105(12): 3496-3506, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793346

RESUMO

The role of antibody structure (conformation) in solution rheology is probed. It is demonstrated here that pH-dependent changes in the tertiary structure of 2 mAb solutions lead to viscoelasticity and not merely a shear viscosity (η) increase. Steady shear flow curves on mAb solutions are reported over broad pH (3.0 ≤ pH ≤ 8.7) and concentration (2 mg/mL ≤ c ≤ 120 mg/mL) ranges to comprehensively characterize their rheology. Results are interpreted using size exclusion chromatography, differential scanning calorimetry, analytical ultracentrifugation, near-UV circular dichroism, and dynamic light scattering. Changes in tertiary structure with concentration lead to elastic yield stress and increased solution viscosity in solution of "mAb1." These findings are supported by dynamic light scattering and differential scanning calorimetry, which show increased hydrodynamic radius of mAb1 at low pH and a reduced melting temperature Tm, respectively. Conversely, another molecule at 120 mg/mL solution concentration is a strong viscoelastic gel due to perturbed tertiary structure (seen in circular dichroism) at pH 3.0, but the same molecule responds as a viscous liquid due to reversible self-association at pH 7.4 (verified by analytical ultracentrifugation). Both protein-protein interactions and structural perturbations govern pH-dependent viscoelasticity of mAb solutions.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Elasticidade , Animais , Células CHO , Varredura Diferencial de Calorimetria/métodos , Cromatografia em Gel/métodos , Cricetinae , Cricetulus , Soluções Farmacêuticas/análise , Soluções Farmacêuticas/química , Domínios e Motivos de Interação entre Proteínas , Reologia/métodos , Viscosidade
13.
J Pharm Sci ; 103(3): 821-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24425059

RESUMO

The recombinant hemagglutinin (rHA)-based influenza vaccine Flublok® has recently been approved in the United States as an alternative to the traditional egg-derived flu vaccines. Flublok is a purified vaccine with a hemagglutinin content that is threefold higher than standard inactivated influenza vaccines. When rHA derived from an H3N2 influenza virus was expressed, purified, and stored for 1 month, a rapid loss of in vitro potency (∼50%) was observed as measured by the single radial immunodiffusion (SRID) assay. A comprehensive characterization of the rHA protein antigen was pursued to identify the potential causes and mechanisms of this potency loss. In addition, the biophysical and chemical stability of the rHA in different formulations and storage conditions was evaluated over time. Results demonstrate that the potency loss over time did not correlate with trends in changes to the higher order structure or hydrodynamic size of the rHA. The most likely mechanism for the early loss of potency was disulfide-mediated cross-linking of rHA, as the formation of non-native disulfide-linked multimers over time correlated well with the observed potency loss. Furthermore, a loss of free thiol content, particularly in specific cysteine residues in the antigen's C-terminus, was correlated with potency loss measured by SRID.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H3N2/metabolismo , Vacinas contra Influenza/química , Fenômenos Químicos , Cisteína/análise , Cisteína/química , Cistina/análise , Cistina/química , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Excipientes/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/farmacologia , Hidrodinâmica , Imunodifusão , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/metabolismo , Vacinas contra Influenza/farmacologia , Octoxinol/química , Oxirredução , Mapeamento de Peptídeos , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Tioglicolatos/química
14.
J Pharm Sci ; 102(7): 2136-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620222

RESUMO

The effects of sucrose and arginine on the conformational and storage stability of an IgG1 monoclonal antibody (mAb) were monitored by differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC), respectively. Excipient effects on protein physical stability were then compared with their effects on the local flexibility of the mAb in solution at pH 6, 25°C using hydrogen/deuterium-exchange mass spectrometry (H/D-MS). Compared with a 0.1 M NaCl control, sucrose (0.5 M) increased conformational stability (T(m) values), slowed the rate of monomer loss, reduced the formation of insoluble aggregates, and resulted in a global trend of small decreases in local flexibility across most regions of the mAb. In contrast, the addition of arginine (0.5 M) decreased the mAb's conformational stability, increased the rate of loss of monomer with elevated levels of soluble and insoluble aggregates, and led to significant increases in the local flexibility in specific regions of the mAb, most notably within the constant domain 2 of the heavy chain (C(H)2). These results provide new insights into the effect of sucrose and arginine on the local dynamics of IgG1 domains as well as preliminary correlations between local flexibility within specific segments of the C(H)2 domain (notably heavy chain 241-251) and the mAb's overall physical stability.


Assuntos
Anticorpos Monoclonais/química , Arginina/química , Excipientes/química , Imunoglobulina G/química , Sacarose/química , Armazenamento de Medicamentos , Espectrometria de Massas , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
15.
J Am Soc Mass Spectrom ; 23(12): 2140-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993047

RESUMO

Chromatographic carry-over can severely distort measurements of amide H/D exchange in proteins analyzed by LC/MS. In this work, we explored the origin of carry-over in the online digestion of an IgG1 monoclonal antibody using an immobilized pepsin column under quenched H/D exchange conditions (pH 2.5, 0 °C). From a consensus list of 169 different peptides consistently detected during digestion of this large, ~150 kDa protein, approximately 30% of the peptic peptides exhibited carry-over. The majority of carry-over originates from the online digestion. Carry-over can be substantially decreased by washing the online digestion flow-path and pepsin column with two wash cocktails: [acetonitrile (5%)/isopropanol (5%)/acetic acid (20%) in water] and [2 M guanidine hydrochloride in 100 mM phosphate buffer pH 2.5]. Extended use of this two-step washing procedure does not adversely affect the specificity or activity of the immobilized pepsin column. The results suggest that although the mechanism of carry-over appears to be chemical in nature, and not hydrodynamic, carry-over cannot be attributed to a single factor such as mass, abundance, pI, or hydrophobicity of the peptides.


Assuntos
Anticorpos Monoclonais/análise , Medição da Troca de Deutério/métodos , Imunoglobulina G/análise , Pepsina A/química , Fragmentos de Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Medição da Troca de Deutério/instrumentação , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Modelos Lineares , Pepsina A/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Temperatura
16.
Theranostics ; 1: 277-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21611107

RESUMO

The long-term objective of this project is to utilize the I-domain protein for the α-subunit of LFA-1 to target drugs to lymphocytes by binding to ICAM receptors on the cell surface. The short-term goal is to provide proof-of-concept that I-domain conjugated to small molecules can still bind to and uptake by ICAM-1 on the surface of lymphocytes (i.e., Raji cells). To accomplish this goal, the I-domain protein was labeled with FITC at several lysine residues to produce the FITC-I-domain and CD spectroscopy showed that the FITC-I-domain has a secondary structure similar to that of the parent I-domain. The FITC-I-domain was taken up by Raji cells via receptor-mediated endocytosis and its uptake can be blocked by anti-I-domain mAb but not by its isotype control. Antibodies to ICAM-1 enhance the binding of I-domain to ICAM-1, suggesting it binds to ICAM-1 at different sites than the antibodies. The results indicate that fluorophore modification does not alter the binding and uptake properties of the I-domain protein. Thus, I-domain could be useful as a carrier of drug to target ICAM-1-expressing lymphocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA