Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 53(2): e2249985, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36427489

RESUMO

Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.


Assuntos
Células Dendríticas , Inflamassomos , Legionella pneumophila , Doença dos Legionários , Monócitos , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Legionella pneumophila/imunologia , Doença dos Legionários/genética , Doença dos Legionários/imunologia , Macrófagos , Camundongos Knockout , Monócitos/metabolismo , Receptores CCR2/metabolismo
2.
PLoS Pathog ; 13(8): e1006502, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771586

RESUMO

Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires' disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Caspase 1/imunologia , Caspase 8/imunologia , Inflamassomos/imunologia , Doença dos Legionários/imunologia , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio , Caspase 1/metabolismo , Caspase 8/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/imunologia , Ensaio de Imunoadsorção Enzimática , Técnicas de Silenciamento de Genes , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Legionella pneumophila , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Inibidora de Apoptose Neuronal , Proteínas de Ligação a Fosfato , Reação em Cadeia da Polimerase em Tempo Real
3.
J Infect Dis ; 215(3): 440-451, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932612

RESUMO

BACKGROUND: Legionella longbeachae (Llo) and Legionella pneumophila (Lpn) are the most common pneumonia-causing agents of the genus. Although both species can be lethal to humans and are highly prevalent, little is known about the molecular pathogenesis of Llo infections. In murine models of infection, Lpn infection is self-limited, whereas Llo infection is lethal. METHODS: We used mouse macrophages, human macrophages, human epithelial cells, and mouse infections in vivo to evaluate multiple parameters of the infection. RESULTS: We determined that the Llo Dot/Icm secretion system is critical for virulence. Different than Lpn, Llo disseminates and the animals develop a severe pulmonary failure, as demonstrated by lung mechanics and blood oxygenation assays. As compared to Lpn, Llo is immunologically silent and fails to trigger the production of cytokines in human pulmonary epithelial cells and in mouse and human macrophages. Infections in Tnfr1-/-, Ifng-/-, and Il12p40-/- mice supported the participation of cytokines for the resistance phenotype. CONCLUSIONS: Both Lpn and Llo require the Dot/Icm system for pathogenesis, but the infection outcome is strikingly different. Llo is immunologically silent, highly virulent, and lethal. The differences reported herein may reflect unappreciated clinical differences in patients infected with Lpn or Llo.


Assuntos
Legionella longbeachae/imunologia , Legionella longbeachae/patogenicidade , Legionelose/imunologia , Animais , Citocinas/metabolismo , Resistência à Doença/imunologia , Feminino , Humanos , Legionella pneumophila/imunologia , Legionelose/microbiologia , Legionelose/patologia , Legionelose/fisiopatologia , Leucócitos Mononucleares , Pulmão/fisiopatologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Virulência
4.
J Infect Dis ; 211(2): 322-30, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25104770

RESUMO

Legionella pneumophila, the etiological agent of Legionnaires' disease, triggers activation of multiple innate immune pathways that lead to the restriction of bacterial replication in vivo. Despite the critical role for MyD88 in infection clearance, the receptors and mechanisms responsible for MyD88-mediated pulmonary bacterial clearance are still unclear. Here, we used flagellin mutants of L. pneumophila, which bypass the NAIP5/NLRC4-mediated restriction of bacterial replication, to assess the receptors involved in MyD88-mediated pulmonary bacterial clearance. By systematically comparing pulmonary clearance of L. pneumophila in C57BL/6 MyD88(-/-), TLR2(-/-), TLR3(-/-), TLR4(-/-), TLR9(-/-), IL-1R(-/-), and IL-18(-/-) mice, we found that, while the knockout of a single Toll-like receptor or interleukin 18 resulted only in minor impairment of bacterial clearance, deficiency in the interleukin 1 (IL-1) receptor led to a significant impairment. IL-1/MyD88-mediated pulmonary bacterial clearance occurs via processes involving the recruitment of neutrophils. Collectively, our data contribute to the understanding of the effector mechanisms involved in MyD88-mediated pulmonary bacterial clearance.


Assuntos
Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Pulmão/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Infiltração de Neutrófilos , Receptores de Interleucina-1/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA