Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 4(1): lqab121, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35047813

RESUMO

The integration of multi-omics data can greatly facilitate the advancement of research in Life Sciences by highlighting new interactions. However, there is currently no widespread procedure for meaningful multi-omics data integration. Here, we present a robust framework, called InterTADs, for integrating multi-omics data derived from the same sample, and considering the chromatin configuration of the genome, i.e. the topologically associating domains (TADs). Following the integration process, statistical analysis highlights the differences between the groups of interest (normal versus cancer cells) relating to (i) independent and (ii) integrated events through TADs. Finally, enrichment analysis using KEGG database, Gene Ontology and transcription factor binding sites and visualization approaches are available. We applied InterTADs to multi-omics datasets from 135 patients with chronic lymphocytic leukemia (CLL) and found that the integration through TADs resulted in a dramatic reduction of heterogeneity compared to individual events. Significant differences for individual events and on TADs level were identified between patients differing in the somatic hypermutation status of the clonotypic immunoglobulin genes, the core biological stratifier in CLL, attesting to the biomedical relevance of InterTADs. In conclusion, our approach suggests a new perspective towards analyzing multi-omics data, by offering reasonable execution time, biological benchmarking and potentially contributing to pattern discovery through TADs.

2.
Sci Rep ; 12(1): 2659, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177697

RESUMO

The COVID-19 pandemic represents an unprecedented global crisis necessitating novel approaches for, amongst others, early detection of emerging variants relating to the evolution and spread of the virus. Recently, the detection of SARS-CoV-2 RNA in wastewater has emerged as a useful tool to monitor the prevalence of the virus in the community. Here, we propose a novel methodology, called lineagespot, for the monitoring of mutations and the detection of SARS-CoV-2 lineages in wastewater samples using next-generation sequencing (NGS). Our proposed method was tested and evaluated using NGS data produced by the sequencing of 14 wastewater samples from the municipality of Thessaloniki, Greece, covering a 6-month period. The results showed the presence of SARS-CoV-2 variants in wastewater data. lineagespot was able to record the evolution and rapid domination of the Alpha variant (B.1.1.7) in the community, and allowed the correlation between the mutations evident through our approach and the mutations observed in patients from the same area and time periods. lineagespot is an open-source tool, implemented in R, and is freely available on GitHub and registered on bio.tools.


Assuntos
Mutação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Software , Águas Residuárias/virologia , Humanos
3.
Front Genet ; 12: 660366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122513

RESUMO

A recent refinement in high-throughput sequencing involves the incorporation of unique molecular identifiers (UMIs), which are random oligonucleotide barcodes, on the library preparation steps. A UMI adds a unique identity to different DNA/RNA input molecules through polymerase chain reaction (PCR) amplification, thus reducing bias of this step. Here, we propose an alignment free framework serving as a preprocessing step of fastq files, called UMIc, for deduplication and correction of reads building consensus sequences from each UMI. Our approach takes into account the frequency and the Phred quality of nucleotides and the distances between the UMIs and the actual sequences. We have tested the tool using different scenarios of UMI-tagged library data, having in mind the aspect of a wide application. UMIc is an open-source tool implemented in R and is freely available from https://github.com/BiodataAnalysisGroup/UMIc.

4.
BMC Res Notes ; 14(1): 376, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565441

RESUMO

OBJECTIVE: The characterization of microRNAs (miRNA) in recent years is an important advance in the field of gene regulation. To this end, several approaches for miRNA expression analysis and various bioinformatics tools have been developed over the last few years. It is a common practice to analyze miRNA PCR Array data using the commercially available software, mostly due to its convenience and ease-of-use. RESULTS: In this work we present miRkit, an open source framework written in R, that allows for the comprehensive analysis of RT-PCR data, from the processing of raw data to a functional analysis of the produced results. The main goal of the proposed tool is to provide an assessment of the samples' quality, perform data normalization by endogenous and exogenous miRNAs, and facilitate differential and functional enrichment analysis. The tool offers fast execution times with low memory usage, and is freely available under a ΜΙΤ license from https://bio.tools/mirkit . Overall, miRkit offers the full analysis from the raw RT-PCR data to functional analysis of targeted genes, and specifically designed to support the popular miScript miRNA PCR Array (Qiagen) technology.


Assuntos
MicroRNAs , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , Reação em Cadeia da Polimerase , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA