Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(12): 123601, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597103

RESUMO

Topological photonic insulators have attracted significant attention for their robust transport of light, impervious to scattering and disorder. This feature is ideally suited for slow light applications, which are typically limited by disorder-induced attenuation. However, no practical approach to broadband topologically protected slow light has been demonstrated yet. In this work, we achieve slow light in topologically unidirectional waveguides based on periodically loading an edge termination with suitably tailored resonances. The resulting edge state dispersion can wind around the Brillouin zone multiple times sustaining broadband, topologically robust slow light, opening exciting opportunities in various photonic scenarios.

2.
Nano Lett ; 17(11): 6557-6563, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28967759

RESUMO

The defect tolerance of halide perovskite materials has led to efficient optoelectronic devices based on thin-film geometries with unprecedented speed. Moreover, it has motivated research on perovskite nanowires because surface recombination continues to be a major obstacle in realizing efficient nanowire devices. Recently, ordered vertical arrays of perovskite nanowires have been realized, which can benefit from nanophotonic design strategies allowing precise control over light propagation, absorption, and emission. An anodized aluminum oxide template is used to confine the crystallization process, either in the solution or in the vapor phase. This approach, however, results in an unavoidable drawback: only nanowires embedded inside the AAO are obtainable, since the AAO cannot be etched selectively. The requirement for a support matrix originates from the intrinsic difficulty of controlling precise placement, sizes, and shapes of free-standing nanostructures during crystallization, especially in solution. Here we introduce a method to fabricate free-standing solution-based vertical nanowires with arbitrary dimensions. Our scheme also utilizes AAO; however, in contrast to embedding the perovskite inside the matrix, we apply a pressure gradient to extrude the solution from the free-standing templates. The exit profile of the template is subsequently translated into the final semiconductor geometry. The free-standing nanowires are single crystalline and show a PLQY up to ∼29%. In principle, this rapid method is not limited to nanowires but can be extended to uniform and ordered high PLQY single crystalline perovskite nanostructures of different shapes and sizes by fabricating additional masking layers or using specifically shaped nanopore endings.

3.
Nano Lett ; 15(11): 7666-70, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26457569

RESUMO

We demonstrate coherent control over the optical response of a coupled plasmonic resonator by high-energy electron beam excitation. We spatially control the position of an electron beam on a gold dolmen and record the cathodoluminescence and electron energy loss spectra. By selective coherent excitation of the dolmen elements in the near field, we are able to manipulate modal amplitudes of bonding and antibonding eigenmodes. We employ a combination of CL and EELS to gain detailed insight in the power dissipation of these modes at the nanoscale as CL selectively probes the radiative response and EELS probes the combined effect of Ohmic dissipation and radiation.

4.
Nano Lett ; 14(10): 5891-8, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25233392

RESUMO

The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal-semiconductor core-shell nanowires. We demonstrate a solution-phase route to obtain stable core-shell metal-Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core-shell nanowires and verify their structure. Metal-semiconductor core-shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption.

5.
Nano Lett ; 13(7): 3173-8, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758555

RESUMO

Metallic and dielectric nanostructures have highly tunable resonances that have been used to increase light absorption in a variety of photovoltaic materials and device structures. Metal nanowires have also emerged as a promising candidate for high-performance transparent electrodes for local contacts. In this Letter we propose combining these electrical and optical functions. As a first step, we use rigorous solutions to Maxwell's equations to demonstrate theoretically extreme absorption in semiconductor thin films wrapped around metal nanowires. We show that there are two key principles underlying this extraordinary light trapping effect: (1) maximizing the absorption of each individual resonance by ensuring it is critically coupled and (2) increasing the total number of degenerate resonances. Inserting a metal core into a semiconductor nanowire creates such a degeneracy: polarization-dependent Mie resonances are transformed into polarization-independent Fabry-Pérot-like resonances. We demonstrate that, by reducing the polarization sensitivity and increasing the number of critically coupled modes, this hybrid coaxial nanowire geometry substantially outperforms solid semiconducting nanowires, even though the semiconductor volume is significantly reduced. These results suggest that metal nanowires with semiconductor shells might be ideal building blocks for photovoltaic and solar fuel applications.

6.
Light Sci Appl ; 13(1): 28, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263149

RESUMO

Diffractive nonlocal metasurfaces have recently opened a broad range of exciting developments in nanophotonics research and applications, leveraging spatially extended-yet locally patterned-resonant modes to control light with new degrees of freedom. While conventional grating responses are elegantly captured by temporal coupled mode theory, current approaches are not well equipped to capture the arbitrary spatial response observed in the nascent field of nonlocal metasurfaces. Here, we introduce spatio-temporal coupled mode theory (STCMT), capable of elegantly capturing the key features of the resonant response of wavefront-shaping nonlocal metasurfaces. This framework can quantitatively guide nonlocal metasurface design while maintaining compatibility with local metasurface frameworks, making it a powerful tool to rationally design and optimize a broad class of ultrathin optical components. We validate this STCMT framework against full-wave simulations of various nonlocal metasurfaces, demonstrating that this tool offers a powerful semi-analytical framework to understand and model the physics and functionality of these devices, without the need for computationally intense full-wave simulations. We also discuss how this model may shed physical insights into nonlocal phenomena in photonics and the functionality of the resulting devices. As a relevant example, we showcase STCMT's flexibility by applying it to study and rapidly prototype nonlocal metasurfaces that spatially shape thermal emission.

7.
Opt Express ; 19(25): 25729-40, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273965

RESUMO

Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators-low refractive index inclusions within a high index embedding medium-exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm.


Assuntos
Desenho Assistido por Computador , Fontes de Energia Elétrica , Nanopartículas/química , Dispositivos Ópticos , Energia Solar , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Refratometria
8.
Nat Commun ; 10(1): 2392, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160564

RESUMO

Quantum emitters such as the diamond nitrogen-vacancy (NV) center are the basis for a wide range of quantum technologies. However, refraction and reflections at material interfaces impede photon collection, and the emitters' atomic scale necessitates the use of free space optical measurement setups that prevent packaging of quantum devices. To overcome these limitations, we design and fabricate a metasurface composed of nanoscale diamond pillars that acts as an immersion lens to collect and collimate the emission of an individual NV center. The metalens exhibits a numerical aperture greater than 1.0, enabling efficient fiber-coupling of quantum emitters. This flexible design will lead to the miniaturization of quantum devices in a wide range of host materials and the development of metasurfaces that shape single-photon emission for coupling to optical cavities or route photons based on their quantum state.

9.
Nat Commun ; 9(1): 4742, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413691

RESUMO

Controlling the directivity of emission and absorption at the nanoscale holds great promise for improving the performance of optoelectronic devices. Previously, directive structures have largely been centered in two categories-nanoscale antennas, and classical lenses. Herein, we utilize an evolutionary algorithm to design 3D dielectric nanophotonic lens structures leveraging both the interference-based control of antennas and the broadband operation of lenses. By sculpting the dielectric environment around an emitter, these nanolenses achieve directivities of 101 for point-sources, and 67 for finite-source nanowire emitters; 3× greater than that of a traditional spherical lens with nearly constant performance over a 200 nm wavelength range. The nanolenses are experimentally fabricated on GaAs nanowires, and characterized via photoluminescence Fourier microscopy, with an observed beaming half-angle of 3.5° and a measured directivity of 22. Simulations attribute the main limitation in the obtained directivity to imperfect alignment of the nanolens to the nanowire beneath.

10.
Sci Rep ; 7(1): 5985, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729645

RESUMO

We propose two-focus fluorescence correlation spectroscopy (2fFCS) on basis of plasmonic nanoantennas that provide distinct hot spots that are individually addressable through polarization, yet lie within a single diffraction limited microscope focus. The importance of two-focus FCS is that a calibrated distance between foci provides an intrinsic calibration to derive diffusion constants from measured correlation times. Through electromagnetic modelling we analyze a geometry of perpendicular nanorods, and their inverse, i.e., nanoslits. While we find that nanorods are not suited for nano-antenna enhanced 2fFCS due to substantial background signal, a nanoslit geometry is expected to provide a di tinct cross-correlation between orthogonally polarized detection channels. Furthermore, by utilizing a periodic array of nanoslits instead of a single pair, the amplitude of the cross-correlation can be enhanced. To demonstrate this technique, we present a proof of principle experiment on the basis of a periodic array of nanoslits, applied to lipid diffusion in a supported lipid bilayer.

11.
ACS Nano ; 11(2): 1412-1418, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28056171

RESUMO

Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing.

12.
Nat Commun ; 7: 13950, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996010

RESUMO

Nanophotonics is becoming invaluable for an expanding range of applications, from controlling the spontaneous emission rate and the directionality of quantum emitters, to reducing material requirements of solar cells by an order of magnitude. These effects are highly dependent on the near field of the nanostructure, which constitutes the evanescent fields from propagating and resonant localized modes. Although the interactions between quantum emitters and nanophotonic structures are increasingly well understood theoretically, directly imaging these interactions experimentally remains challenging. Here we demonstrate a photoactivated localization microscopy-based technique to image emitter-nanostructure interactions. For a 75 nm diameter silicon nanowire, we directly observe a confluence of emission rate enhancement, directivity modification and guided mode excitation, with strong interaction at scales up to 13 times the nanowire diameter. Furthermore, through analytical modelling we distinguish the relative contribution of these effects, as well as their dependence on emitter orientation.

13.
ACS Nano ; 10(9): 8620-31, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27580421

RESUMO

Nanophotonic engineering holds great promise for photovoltaics, with several recently proposed approaches that have enabled efficiencies close to the Shockley-Queisser limit. Here, we theoretically demonstrate that suitably designed nanophotonic structures may be able to surpass the 1 sun Shockley-Queisser limit by utilizing tailored directivity of the scattering response of nanoparticles. We show that large absorption cross sections do not play a significant role in the efficiency enhancement, and on the contrary, directivity enhancement constitutes the nanoscale equivalent to concentration in macroscopic photovoltaic systems. Based on this principle, we discuss fundamental limits to the efficiency based on directivity bounds and a number of approaches to get close to these limits. We also highlight that, in practice, achieving efficiencies above the Shockley-Queisser limit is strongly hindered by whether high short-circuit currents can be maintained. Finally, we discuss how our results are affected by the presence of significant nonradiative recombination, in which case both directivity and photon escape probability should be increased to achieve voltage enhancement.

14.
Nat Nanotechnol ; 11(12): 1071-1075, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618257

RESUMO

Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).

15.
ACS Photonics ; 2(7): 816-821, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26322319

RESUMO

We present an approach to spectrum splitting for photovoltaics that utilizes the resonant optical properties of nanostructures for simultaneous voltage enhancement and spatial separation of different colors of light. Using metal-insulator-metal resonators commonly used in broadband metamaterial absorbers we show theoretically that output voltages can be enhanced significantly compared to single-junction devices. However, the approach is general and works for any type of resonator with a large absorption cross section. Due to its resonant nature, the spectrum splitting occurs within only a fraction of the wavelength, as opposed to traditional spectrum splitting methods, where many wavelengths are required. Combining nanophotonic spectrum splitting with other nanophotonic approaches to voltage enhancements, such as angle restriction and concentration, may lead to highly efficient but deeply subwavelength photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA