Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 60(13): 1063-1074, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691067

RESUMO

Controlled patterning of nanoparticles on bioassemblies enables synthesis of complex materials for applications in optics, nanoelectronics, and sensing. Biomolecular self-assembly offers molecular control for engineering patterned nanomaterials, but current approaches have been limited in their ability to combine high nanoparticle coverage with generality that enables incorporation of multiple nanoparticle types. Here, we synthesize photonic materials on crystalline two-dimensional (2D) protein sheets using orthogonal bioconjugation reactions, organizing quantum dots (QDs), gold nanoparticles (AuNPs), and upconverting nanoparticles along the surface-layer (S-layer) protein SbsB from the extremophile Geobacillus stearothermophilus. We use electron and optical microscopy to show that isopeptide bond-forming SpyCatcher and SnoopCatcher systems enable the simultaneous and controlled conjugation of multiple types of nanoparticles (NPs) at high densities along the SbsB sheets. These NP conjugation reactions are orthogonal to each other and to Au-thiol bond formation, allowing tailorable nanoparticle combinations at sufficient labeling efficiencies to permit optical interactions between nanoparticles. Fluorescence lifetime imaging of SbsB sheets conjugated to QDs and AuNPs at distinct attachment sites shows spatially heterogeneous QD emission, with shorter radiative decays and brighter fluorescence arising from plasmonic enhancement at short interparticle distances. This specific, stable, and efficient conjugation of NPs to 2D protein sheets enables the exploration of interactions between pairs of nanoparticles at defined distances for the engineering of protein-based photonic nanomaterials.


Assuntos
Proteínas de Bactérias/química , Nanopartículas/química , Nanotecnologia/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Imagem Óptica , Conformação Proteica em Folha beta , Pontos Quânticos/química
2.
Chemphyschem ; 16(14): 2974-80, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26310607

RESUMO

Ease of genetic encoding, labeling specificity, and high photostability are the most sought after qualities in a fluorophore for biological detection. Furthermore, many applications can gain from the fluorogenic nature of fluoromodules and the ability to turn on the same fluoromodules multiple times. Fluorogen-activating peptides (FAPs) bind noncovalently to their cognate fluorogens and exhibit enhanced photostability. Herein, the photostabilities of malachite green (MG)-binding and thiazole-orange-binding FAPs are compared under limiting- and excess-fluorogen conditions to establish distinct mechanisms for photostability that correspond to the dissociation rate of the FAP-fluorogen complex. FAPs with slow dissociation show evidence of dye encapsulation and protection from photo or environmental degradation and single-step bleaching at the single molecule level, whereas those with rapid dissociation show repeated cycles of binding and enhanced photostability by exchange of bleached fluorogen with a new dye. A combination of generalizable selection pressure based on bleaching, flow cytometry, and site-specific amino acid mutagenesis is used to obtain a modified FAP with enhanced photostability, due to rapid dissociation of the MG fluorogen. These studies shed light on the basic mechanisms by which noncovalent association can effect photostable labeling, and demonstrate novel reagents for photostable and intermittent labeling of biological targets.


Assuntos
Fluoretos/química , Peptídeos/química , Fotoquímica , Cinética
3.
ACS Nano ; 15(11): 18374-18384, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34694776

RESUMO

Inorganic nanocrystals such as quantum dots (QDs) and upconverting nanoparticles (UCNPs) are uniquely suited for quantitative live-cell imaging and are typically functionalized with ligands to study specific receptors or cellular targets. Antibodies (Ab) are among the most useful targeting reagents owing to their high affinities and specificities, but common nanocrystal labeling methods may orient Ab incorrectly, be reversible or denaturing, or lead to Ab-NP complexes too large for some applications. Here, we show that SpyCatcher proteins, which bind and spontaneously form covalent isopeptide bonds with cognate SpyTag peptides, can conjugate engineered Ab to nanoparticle surfaces with control over stability, orientation, and stoichiometry. Compact SpyCatcher-functionalized QDs and UCNPs may be labeled with short-chain variable fragment Ab (scFv) engineered to bind urokinase-type plasminogen activator receptors (uPAR) that are overexpressed in many human cancers. Confocal imaging of anti-uPAR scFv-QD conjugates shows the antibody mediates specific binding and internalization by breast cancer cells expressing uPAR. Time-lapse imaging of photostable scFv-UCNP conjugates shows that Ab binding causes uPAR internalization with a ∼20 min half-life on the cell surface, and uPAR is internalized to endolysosomal compartments distinct from general membrane stains and without significant recycling to the cell surface. The controlled and stable conjugation of engineered Ab to NPs enables targeting of diverse receptors for live-cell study of their distribution, trafficking, and physiology.


Assuntos
Nanopartículas , Pontos Quânticos , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Anticorpos/metabolismo , Membrana Celular/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
4.
Biomater Sci ; 8(3): 837-845, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31790090

RESUMO

Semiconductor quantum dots (QDs) have demonstrated utility in long-term single particle tracking of membrane proteins in live cells in culture. To extend the superior optical properties of QDs to more physiologically relevant cell platforms, such as acute brain slices, we examine the photophysics of compact ligand-conjugated CdSe/CdS QDs using both ensemble and single particle analysis in brain tissue media. We find that symmetric core passivation is critical for both photostability in oxygenated media and for prolonged single particle imaging in brain slices. We then demonstrate the utility of these QDs by imaging single dopamine transporters in acute brain slices, achieving 20 nm localization precision at 10 Hz frame rates. These findings detail design requirements needed for new QD probes in complex living environments, and open the door to physiologically relevant studies that capture the utility of QD probes in acute brain slices.


Assuntos
Química Encefálica , Proteínas/química , Pontos Quânticos/química , Animais , Encéfalo/metabolismo , Ligantes , Camundongos , Microscopia de Fluorescência , Microtomia , Proteínas/metabolismo , Compostos de Selênio/química , Coloração e Rotulagem , Compostos de Zinco/química
5.
ACS Synth Biol ; 8(1): 181-190, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30577690

RESUMO

Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating engineered analogues of these natural materials is of growing interest, our ability to hierarchically order materials using living cells largely relies on engineered 1D protein filaments. Here, we lay the foundation for bottom-up assembly of engineered living material composites in 2D along the cell body using a synthetic biology approach. We engineer the paracrystalline surface-layer (S-layer) of Caulobacter crescentus to display SpyTag peptides that form irreversible isopeptide bonds to SpyCatcher-modified proteins, nanocrystals, and biopolymers on the extracellular surface. Using flow cytometry and confocal microscopy, we show that attachment of these materials to the cell surface is uniform, specific, and covalent, and its density can be controlled on the basis of the insertion location within the S-layer protein, RsaA. Moreover, we leverage the irreversible nature of this attachment to demonstrate via SDS-PAGE that the engineered S-layer can display a high density of materials, reaching 1 attachment site per 288 nm2. Finally, we show that ligation of quantum dots to the cell surface does not impair cell viability, and this composite material remains intact over a period of 2 weeks. Taken together, this work provides a platform for self-organization of soft and hard nanomaterials on a cell surface with precise control over 2D density, composition, and stability of the resulting composite, and is a key step toward building hierarchically ordered engineered living materials with emergent properties.


Assuntos
Caulobacter crescentus/genética , Membrana Celular/genética , DNA Bacteriano/genética , Caulobacter crescentus/metabolismo , Membrana Celular/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Edição de Genes
6.
ACS Nano ; 12(5): 4469-4477, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29608274

RESUMO

Functionalization of nanocrystals is essential for their practical application, but synthesis on nanocrystal surfaces is limited by incompatibilities with certain key reagents. The copper-catalyzed azide-alkyne cycloaddition is among the most useful methods for ligating molecules to surfaces, but has been largely useless for semiconductor quantum dots (QDs) because Cu+ ions quickly and irreversibly quench QD fluorescence. To discover nonquenching synthetic conditions for Cu-catalyzed click reactions on QD surfaces, we developed a combinatorial fluorescence assay to screen >2000 reaction conditions to maximize cycloaddition efficiency while minimizing QD quenching. We identify conditions for complete coupling without significant quenching, which are compatible with common QD polymer surfaces and various azide/alkyne pairs. Based on insight from the combinatorial screen and mechanistic studies of Cu coordination and quenching, we find that superstoichiometric concentrations of Cu can promote full coupling if accompanied by ligands that selectively compete with the Cu from the QD surface but allow it to remain catalytically active. Applied to the conjugation of a K+ channel-specific peptidyl toxin to CdSe/ZnS QDs, we synthesize unquenched QD conjugates and image their specific and voltage-dependent affinity for K+ channels in live cells.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Pontos Quânticos/química , Estrutura Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
7.
J Comp Neurol ; 526(9): 1444-1456, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29484652

RESUMO

Somatosensation is a complex sense mediated by more than a dozen distinct neural subtypes in the periphery. Although pressure and touch sensation have been mapped to primary somatosensory cortex in rodents, it has been controversial whether pain and temperature inputs are also directed to this area. Here we use a well-defined somatosensory modality, cool sensation mediated by peripheral TrpM8-receptors, to investigate the neural substrate for cool perception in the mouse neocortex. Using activation of cutaneous TrpM8 receptor-expressing neurons, we identify candidate neocortical areas responsive for cool sensation. Initially, we optimized TrpM8 stimulation and determined that menthol, a selective TrpM8 agonist, was more effective than cool stimulation at inducing expression of the immediate-early gene c-fos in the spinal cord. We developed a broad-scale brain survey method for identification of activated brain areas, using automated methods to quantify c-fos immunoreactivity (fos-IR) across animals. Brain areas corresponding to the posterior insular cortex and secondary somatosensory (S2) show elevated fos-IR after menthol stimulation, in contrast to weaker activation in primary somatosensory cortex (S1). In addition, menthol exposure triggered fos-IR in piriform cortex, the amygdala, and the hypothalamus. Menthol-mediated activation was absent in TrpM8-knock-out animals. Our results indicate that cool somatosensory input broadly drives neural activity across the mouse brain, with neocortical signal most elevated in the posterior insula, as well as S2 and S1. These findings are consistent with data from humans indicating that the posterior insula is specialized for somatosensory information encoding temperature, pain, and gentle touch.


Assuntos
Vias Aferentes/fisiologia , Neocórtex/metabolismo , Neurônios/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Antipruriginosos/farmacologia , Temperatura Baixa , Feminino , Masculino , Mentol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , Medula Espinal/citologia , Medula Espinal/fisiologia , Canais de Cátion TRPM/genética , Tato
8.
ACS Nano ; 11(7): 6773-6781, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28618223

RESUMO

Semiconductor quantum dots (QDs) have proven to be superior probes for single-molecule imaging compared to organic or genetically encoded fluorophores, but they are limited by difficulties in protein targeting, their larger size, and on-off blinking. Here, we report compact aqueous CdSe/CdS QDs with significantly improved bioconjugation efficiency and superior single-molecule optical properties. We have synthesized covalent protein labeling ligands (i.e., SNAP tags) that are optimized for nanoparticle use, and QDs functionalized with these ligands label SNAP-tagged proteins ∼10-fold more efficiently than existing SNAP ligands. Single-molecule analysis of these QDs shows 99% of time spent in the fluorescent on-state, ∼4-fold higher quantum efficiency than standard CdSe/ZnS QDs, and 350 million photons detected before photobleaching. Bright signals of these QDs enable us to track the stepping movement of a kinesin motor in vitro, and the improved labeling efficiency enables tracking of single kinesins in live cells.


Assuntos
Compostos de Cádmio/química , Cinesinas/análise , Imagem Óptica/métodos , Pontos Quânticos/química , Compostos de Selênio/química , Sulfetos/química , Células HeLa , Humanos , Ligantes , Nanotecnologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA