Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 504: 58-74, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739118

RESUMO

The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-ß1 (TGF-ß1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/ß-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.


Assuntos
Proteínas Hedgehog , Neoplasias , Feminino , Humanos , Proteínas Hedgehog/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Placentário , Transdução de Sinais/fisiologia
2.
Inflammopharmacology ; 32(1): 307-317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085446

RESUMO

Inflammation is a multifaceted biological reaction to a wide range of stimuli, and it has been linked to the onset and progression of chronic diseases such as heart disease, cancer, and diabetes. Inflammatory markers found in the blood, including C-reactive protein, serum amyloid A, fibrinogen, plasma viscosity, erythrocyte sedimentation rate, interleukin-6, and soluble adhesion molecules (like intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), are risk factors for cardiovascular diseases such as coronary heart disease, stroke, and peripheral arterial disease. These markers play a crucial role in understanding and assessing cardiovascular health. Due to this complicated relationship between inflammation and cardiovascular disease, anti-inflammatory agents of natural origin have been the subject of many preclinical and clinical studies in recent years. Eugenol is a natural phenolic compound found in clove oil, nutmeg oil, cinnamon oil, and bay leaf oil, as well as other essential oils. Eugenol has been shown to have anti-inflammatory properties in many forms of experimental inflammation. It may scavenge free radicals, which contribute to inflammation and tissue damage. Various studies also suggest that eugenol can limit the production of inflammatory mediators such as prostaglandins, cytokines, and chemokines. Animal models of arthritis, colitis, and lung damage, as well as human clinical studies, have shown that eugenol has phenomenal anti-inflammatory properties. These properties suggest that eugenol may be able to reduce the risk of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Óleos Voláteis , Animais , Humanos , Eugenol/farmacologia , Eugenol/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Fatores de Risco , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Óleos Voláteis/uso terapêutico , Inflamação/tratamento farmacológico , Fatores de Risco de Doenças Cardíacas
3.
Neurochem Res ; 48(2): 317-339, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308619

RESUMO

The growth factor brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin-related kinase receptor type B (TrkB) play an active role in numerous areas of the adult brain, where they regulate the neuronal activity, function, and survival. Upregulation and downregulation of BDNF expression are critical for the physiology of neuronal circuits and functioning in the brain. Loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric disorders. This article reviews the BDNF gene structure, transport, secretion, expression and functions in the brain. This article also implicates BDNF in several brain-related disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, major depressive disorder, schizophrenia, epilepsy and bipolar disorder.


Assuntos
Doença de Alzheimer , Transtorno Bipolar , Transtorno Depressivo Maior , Adulto , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo , Transtorno Bipolar/metabolismo , Receptor trkB/metabolismo
4.
Neurochem Res ; 48(7): 2029-2058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36795184

RESUMO

Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/diagnóstico , Biomarcadores , Encéfalo
5.
Neurochem Res ; 47(8): 2173-2186, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35596882

RESUMO

Cerebral ischemia is a leading cause of death in the globe, with a large societal cost. Deprivation of blood flow, together with consequent glucose and oxygen shortage, activates a variety of pathways that result in permanent brain damage. As a result, ischemia raises energy demand, which is linked to significant alterations in brain energy metabolism. Even at the low glucose levels reported in plasma during ischemia, glucose transport activity may adjust to assure the supply of glucose to maintain normal cellular function. Glucose transporters in the brain are divided into two groups: sodium-independent glucose transporters (GLUTs) and sodium-dependent glucose cotransporters (SGLTs).This review assess the GLUT structure, expression, regulation, pathobiology of GLUT in cerebral ischemia and regulators of GLUT and it also provides the synopsis of the literature exploring the relationship between GLUT and the various downstream signalling pathways for e.g., AMP-activated protein kinase (AMPK), CREB (cAMP response element-binding protein), Hypoxia-inducible factor 1 (HIF)-1, Phosphatidylinositol 3-kinase (PI3-K), Mitogen-activated protein kinase (MAPK) and adenylate-uridylate-rich elements (AREs). Therefore, the aim of the present review was to elaborate the therapeutic implications of GLUT in the cerebral ischemia.


Assuntos
Isquemia Encefálica , Proteínas Facilitadoras de Transporte de Glucose , Transporte Biológico , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Sódio
6.
Neurochem Res ; 47(6): 1459-1476, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35133568

RESUMO

L-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson's disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.


Assuntos
Doença de Alzheimer , Infecções por HIV , Humanos , Cinurenina/metabolismo , Estresse Oxidativo/fisiologia , Triptofano/metabolismo
7.
Neurochem Res ; 46(11): 2800-2831, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34282491

RESUMO

Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-É£) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-É£ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-É£ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-É£ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fármacos Neuroprotetores/administração & dosagem , PPAR gama/agonistas , PPAR gama/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
8.
Psychopharmacology (Berl) ; 241(8): 1491-1516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801530

RESUMO

RATIONALE: Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE: This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS: An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION: Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.


Assuntos
Transtornos Mentais , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Animais , Terapia de Alvo Molecular
9.
Life Sci ; 342: 122537, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428569

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor function and is caused by a gradual decline of dopaminergic neurons in the brain's substantia pars compacta (Snpc) region. Multiple molecular pathways are involved in the pathogenesis, which results in impaired cellular functions and neuronal degeneration. However, the role of sirtuins, a type of NAD+-dependent deacetylase, in the pathogenesis of Parkinson's disease has recently been investigated. Sirtuins are essential for preserving cellular homeostasis because they control a number of biological processes, such as metabolism, apoptosis, and DNA repair. This review shed lights on the dysregulation of sirtuin activity in PD, highlighting the role that acetylation and deacetylation processes play in the development of the disease. Key regulators of protein acetylation, sirtuins have been found to be involved in the aberrant acetylation of vital substrates linked to PD pathology when their balance is out of balance. The hallmark characteristics of PD such as neuroinflammation, oxidative stress, and mitochondrial dysfunction have all been linked to the dysregulation of sirtuin expression and activity. Furthermore, we have also explored how the modulators of sirtuins can be a promising therapeutic intervention in the treatment of PD.


Assuntos
Doença de Parkinson , Sirtuínas , Humanos , Doença de Parkinson/tratamento farmacológico , Sirtuínas/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Neurônios Dopaminérgicos/metabolismo
10.
Pharmacol Rep ; 75(4): 838-860, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37347388

RESUMO

Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.


Assuntos
Proteínas Hedgehog , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Hedgehog/metabolismo , Fator A de Crescimento do Endotélio Vascular , Citocinas , Isquemia
11.
Int Immunopharmacol ; 125(Pt A): 111095, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875038

RESUMO

Although the concept of using the patient's immune system to combat cancer has been around for a while, it is only in recent times that substantial progress has been achieved in this field. Over the last ten years, there has been a significant advancement in the treatment of cancer through immune checkpoint blockade. This treatment has been approved for multiple types of tumors. Another approach to modifying the immune system to detect tumor cells and fight them off is adaptive cell therapy (ACT). This therapy involves using T cells that have been modified with either T cell receptors (TCR) or chimeric antigen receptors (CAR) to target the tumor cells. ACT has demonstrated encouraging outcomes in different types of tumors, and clinical trials are currently underway worldwide to enhance this form of treatment. This review focuses on the advancements that have been made in ACT from preclinical to clinical settings till now.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Terapia Baseada em Transplante de Células e Tecidos
12.
Environ Sci Pollut Res Int ; 30(36): 85910-85919, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37400700

RESUMO

BACKGROUND: Cucurbita pepo (C. pepo) is cultivated and used traditionally as vegetable as well as medicine in different parts of the world. The aim of current study was to investigate the potential of C. pepo in attenuation of diabetic neuropathy via using streptozotocin (STZ)-induced diabetes model in male wistar rats. MATERIALS AND METHODS: Diabetic neuropathy was induced by administration of STZ; 65 mg/kg, i.p. and Nicotinamide (NAD; 230 mg/kg i.p.) and assessed by measuring thermal hyperalgesia, mechanical hyperalgesia and motor nerve conduction velocity (MNCV) in experimental animals. Treatment with different doses of (100, 200 and 400 mg/kg, p.o.) petroleum ether extract of C. pepo (CPE) and hydroethanolic extract of C. pepo (CHE) was started from the 60th day of STZ/NAD administration and continued upto 90th day. RESULTS: CPE and CHE significantly attenuated the behavioural changes including hyperalgesia, allodynia and MNCV linked to diabetic neuropathy. Moreover, the oxidative stress and level of TNF-α, TGF-ß and IL-1ß was found to be significantly attenuated in experimental animals. CONCLUSION: Thus C. pepo might ameliorate the progression of diabetic neuropathy via modulation of chronic hyperglycemia and therefore and have therapeutic potential for treatment of diabetic neuropathic pain.


Assuntos
Cucurbita , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Ratos , Masculino , Animais , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , NAD , Estresse Oxidativo , Ratos Wistar , Inflamação
13.
Environ Sci Pollut Res Int ; 29(40): 60542-60557, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35420347

RESUMO

When diabetes neuropathy occurs, the oxidative stress caused by chronic hyperglycemia may result in chronic neuronal damage. To mitigate the effects of hyperglycemia-induced neuronal damage, it may be beneficial to address oxidative stress and inflammation in the body. The current study evaluated the neuroprotective efficacy of Thuja occidentalis in streptozotocin (STZ)-nicotinamide (NAD)-induced diabetic neuropathy in male Wistar rats. A single dose of STZ (65 mg/kg, i.p.) was used to induce diabetic neuropathy in Wistar rats. Serum insulin, glucose, hyperalgesia, oxidative stress, inflammatory markers, and histopathology of the sciatic nerve were evaluated for neuropathy. Wistar rats were treated with varying doses of hydroalcoholic extracts of Thuja occidentalis (HAETO) and gabapentin for 30 days. Thuja occidentalis considerably corrected the levels of inflammatory markers and oxidative stress caused by hyperglycemia; also, it led to the restoration of neuronal functions, indicating that it is effective in treating diabetic neuropathy. Furthermore, the molecular docking of thujone at the active pockets of various inflammatory mediators (IL-1ß, IL-6, TGF-ß1, and TNF-α) has shown good interactions with critical amino acid residues. These findings indicate that the hydroalcoholic extract of Thuja occidentalis effectively inhibits the development of diabetic neuropathy. The hypoglycemic, antioxidant, anti-hyperalgesia, and anti-inflammatory properties of Thuja occidentalis are thought to be responsible for the neuroprotective benefit.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Hiperglicemia , Thuja , Animais , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada , Hiperglicemia/tratamento farmacológico , Masculino , Simulação de Acoplamento Molecular , Estresse Oxidativo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
14.
Curr Drug Targets ; 23(3): 286-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34238153

RESUMO

Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as a potential treatment for neurological diseases.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Doença de Alzheimer/tratamento farmacológico , Humanos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Doença de Parkinson/tratamento farmacológico
15.
Biomed Pharmacother ; 145: 112305, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34872802

RESUMO

Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.


Assuntos
Diabetes Mellitus Experimental/complicações , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/fisiopatologia , Progressão da Doença , Humanos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA