Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Hippocampus ; 29(10): 891-904, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30870587

RESUMO

Diabetes induces early sufferance in the cholinergic septo-hippocampal system, characterized by deficits in learning and memory, reduced hippocampal plasticity and abnormal pro-nerve growth factor (proNGF) release from hippocampal cells, all linked to dysfunctions in the muscarinic cholinergic modulation of hippocampal physiology. These alterations are associated with dysregulation of several cholinergic markers, such as the NGF receptor system and the acetylcholine biosynthetic enzyme choline-acetyl transferase (ChAT), in the medial septum and its target, the hippocampus. Controlled and repeated sensory stimulation by electroacupuncture has been proven effective in counteracting the consequences of diabetes on cholinergic system physiology in the brain. Here, we used a well-established Type 1 diabetes model, obtained by injecting young adult male rats with streptozotocin, to induce sufferance in the septo-hippocampal system. We then evaluated the effects of a 3-week treatment with low-frequency electroacupuncture on: (a) the expression and protein distribution of proNGF in the hippocampus, (b) the tissue distribution and content of NGF receptors in the medial septum, (c) the neuronal cholinergic and glial phenotype in the septo-hippocampal circuitry. Twice-a-week treatment with low-frequency electroacupuncture normalized, in both hippocampus and medial septum, the ratio between the neurotrophic NGF and its neurotoxic counterpart, the precursor proNGF. Electroacupuncture regulated the balance between the two major proNGF variants (proNGF-A and proNGF-B) at both gene expression and protein synthesis levels. In addition, electroacupuncture recovered to basal level the pro-neurotrophic NGF receptor tropomyosin receptor kinase-A content, down-regulated in medial septum cholinergic neurons by diabetes. Electroacupuncture also regulated ChAT content in medial septum neurons and its anterograde transport toward the hippocampus. Our data indicate that repeated sensory stimulation can positively affect brain circuits involved in learning and memory, reverting early impairment induced by diabetes development. Electroacupuncture could exert its effects on the septo-hippocampal cholinergic neurotransmission in diabetic rats, not only by rescuing the hippocampal muscarinic responsivity, as previously described, but also normalizing acetylcholine biosynthesis and NGF metabolism in the hippocampus.


Assuntos
Neurônios Colinérgicos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Eletroacupuntura , Hipocampo/metabolismo , Septo do Cérebro/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Masculino , Fatores de Crescimento Neural/metabolismo , Vias Neurais/metabolismo , Precursores de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/metabolismo , Resultado do Tratamento
2.
Brain ; 139(Pt 2): 404-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26767384

RESUMO

Paediatric optic pathway gliomas are low-grade brain tumours characterized by slow progression and invalidating visual loss. Presently there is no strategy to prevent visual loss in this kind of tumour. This study evaluated the effects of nerve growth factor administration in protecting visual function in patients with optic pathway glioma-related visual impairment. A prospective randomized double-blind phase II clinical trial was conducted in 18 optic pathway glioma patients, aged from 2 to 23 years, with stable disease and severe visual loss. Ten patients were randomly assigned to receive a single 10-day course of 0.5 mg murine nerve growth factor as eye drops, while eight patients received placebo. All patients were evaluated before and after treatment, testing visual acuity, visual field, visual-evoked potentials, optic coherence tomography, electroretinographic photopic negative response, and magnetic resonance imaging. Post-treatment evaluations were repeated at 15, 30, 90, and 180 days Brain magnetic resonance imaging was performed at baseline and at 180 days. Treatment with nerve growth factor led to statistically significant improvements in objective electrophysiological parameters (electroretinographic photopic negative response amplitude at 180 days and visual-evoked potentials at 30 days), which were not observed in placebo-treated patients. Furthermore, in patients in whom visual fields could still be measured, visual field worsening was only observed in placebo-treated cases, while three of four nerve growth factor-treated subjects showed significant visual field enlargement. This corresponded to improved visually guided behaviour, as reported by the patients and/or the caregivers. There was no evidence of side effects related to nerve growth factor treatment. Nerve growth factor eye drop administration appears a safe, easy and effective strategy for the treatment of visual loss associated with optic pathway gliomas.


Assuntos
Cegueira/diagnóstico , Cegueira/tratamento farmacológico , Fator de Crescimento Neural/administração & dosagem , Glioma do Nervo Óptico/diagnóstico , Glioma do Nervo Óptico/tratamento farmacológico , Adolescente , Cegueira/epidemiologia , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Masculino , Glioma do Nervo Óptico/epidemiologia , Estudos Prospectivos , Campos Visuais/efeitos dos fármacos , Campos Visuais/fisiologia , Adulto Jovem
3.
Brain Inj ; 31(11): 1538-1547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28972396

RESUMO

BACKGROUND: Nerve growth factor (NGF) promotes neural recovery after experimental traumatic brain injury (TBI) supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated protein Doublecortin (DCX). Only a few studies reported NGF administration in paediatric patients with severe TBI. METHODS: A four-year-old boy in a persistent unresponsive wakefulness syndrome (UWS) was treated with intranasal murine NGF administration 6 months after severe TBI. The patient received four cycles of intranasal NGF (0.1 mg/kg, twice a day for 10 consecutive days). RESULTS: NGF administration improved functional [Positron Emission Tomography/Computed Tomography (PET/CT); Single photon emission/Computed Tomography (SPECT/CT) and Magnetic Resonance Imaging (MRI)] assessment, electrophysiological [Electroencephalogram (EEG) and Visual Evoked Potential (VEP)] studies and clinical conditions. He showed improvements in voluntary movements, facial mimicry, phonation, attention and verbal comprehension, ability to cry, cough reflex, oral motility, feeding capacity, and bowel and urinary functions. After NGF administration, raised levels of both NGF and DCX were found in the cerebrospinal fluid of the patient. No side effects were reported. CONCLUSIONS: Although further studies are needed for better understanding the neuroprotective role of this neurotrophin, intranasal NGF administration appears to be a promising and safe rescuing strategy treatment in children with neurological impairment after TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Fator de Crescimento Neural/administração & dosagem , Administração Intranasal , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Pré-Escolar , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Eletroencefalografia , Potenciais Evocados Visuais/efeitos dos fármacos , Fluordesoxiglucose F18/farmacocinética , Escala de Coma de Glasgow , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroimagem , Exame Neurológico , Neuropeptídeos/metabolismo
4.
J Transl Med ; 14: 8, 2016 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-26748988

RESUMO

BACKGROUND: Preclinical trials have shown beneficial effects of nerve growth factor (NGF) administration on visual function in animal models of retinitis pigmentosa (RP). The aim of this pilot study was to explore the potential efficacy of short term NGF eye drops treatment in patients affected by RP. METHODS: The trial consisted in 10 days daily administration of murine NGF as eye-drops for a total dose of 1 mg NGF/pt. Eight RP patients at an advanced stage of the disease were included in the trial. To monitor safety and potential adverse effects subjects underwent standard clinical measures and were requested to report any general or topic alterations following NGF assumption. Retinal function was assessed at baseline and after treatment by best-corrected visual acuity measurement (BCVA), macular focal electroretinogram (fERG) recording and Goldmann visual field testing. RESULTS: A transient tolerable local corneal irritation was the only adverse effect reported. fERG and BCVA remained within the limits determined by test-retest analysis of a large cohort of RP patients. Three patients reported a subjective feeling of improved visual performance. This was associated to a temporary enlargement of the visual field in all three patients and to improved fERG in two of the three. CONCLUSIONS: Short-term administration of NGF eye-drops caused neither significant adverse effects nor visual function losses in the tested RP patients. A minority of patients experienced an improvement of visual performance as shown by Goldmann visual field and fERG. This study supports the safety and possible efficacy of NGF eye-drops administration in RP patients. TRIAL REGISTRATION: EudraCT n. 2008-004561-26.


Assuntos
Fator de Crescimento Neural/administração & dosagem , Fator de Crescimento Neural/uso terapêutico , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Administração Tópica , Adulto , Animais , Eletrorretinografia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fator de Crescimento Neural/farmacologia , Soluções Oftálmicas/farmacologia , Projetos Piloto , Retinose Pigmentar/fisiopatologia , Fatores de Tempo , Acuidade Visual/efeitos dos fármacos , Campos Visuais/efeitos dos fármacos
5.
J Immunol ; 192(7): 3345-54, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24585880

RESUMO

Nerve growth factor (NGF) levels are highly increased in inflamed tissues, but their role is unclear. We show that NGF is part of a regulatory loop in monocytes: inflammatory stimuli, while activating a proinflammatory response through TLRs, upregulate the expression of the NGF receptor TrkA. In turn, NGF, by binding to TrkA, interferes with TLR responses. In TLR-activated monocytes, NGF reduces inflammatory cytokine production (IL-1ß, TNF-α, IL-6, and IL-8) while inducing the release of anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist). NGF binding to TrkA affects TLR signaling, favoring pathways that mediate inhibition of inflammatory responses: it increases Akt phosphorylation, inhibits glycogen synthase kinase 3 activity, reduces IκB phosphorylation and p65 NF-κB translocation, and increases nuclear p50 NF-κB binding activity. Use of TrkA inhibitors in TLR-activated monocytes abolishes the effects of NGF on the activation of anti-inflammatory signaling pathways, thus increasing NF-κB pathway activation and inflammatory cytokine production while reducing IL-10 production. PBMC and mononuclear cells obtained from the synovial fluid of patients with juvenile idiopathic arthritis show marked downregulation of TrkA expression. In ex vivo experiments, the addition of NGF to LPS-activated juvenile idiopathic arthritis to both mononuclear cells from synovial fluid and PBMC fails to reduce the production of IL-6 that, in contrast, is observed in healthy donors. This suggests that defective TrkA expression may facilitate proinflammatory mechanisms, contributing to chronic tissue inflammation and damage. In conclusion, this study identifies a novel regulatory mechanism of inflammatory responses through NGF and its receptor TrkA, for which abnormality may have pathogenic implications for chronic inflammatory diseases.


Assuntos
Citocinas/imunologia , Mediadores da Inflamação/imunologia , Monócitos/imunologia , Fator de Crescimento Neural/imunologia , Receptor trkA/imunologia , Adolescente , Artrite Juvenil/imunologia , Artrite Juvenil/patologia , Western Blotting , Células Cultivadas , Criança , Pré-Escolar , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Lactente , Mediadores da Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Ligação Proteica/imunologia , Receptor trkA/genética , Receptor trkA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
6.
Compr Psychiatry ; 65: 44-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773989

RESUMO

Empirical and theoretical studies support the notion that anomalous self-experience (ASE) may constitute a phenotypic aspect of vulnerability to schizophrenia, but there are no studies examining the relationship of ASE with other clinical risk factors in a sample of ultra-high risk (UHR) subjects. The aim of the present study was to explore the relationship between ASE, prodromal symptoms, neurocognition, and global functioning in a sample of 45 UHR adolescents and young adults (age range 15-25years) at first contact with Public Mental Health Services. Prodromal symptoms and global functioning were assessed through the SIPS interview. ASE was evaluated through the Examination of Anomalous Self-Experience (EASE); for neurocognition, we utilized a battery of tests examining seven cognitive domains as recommended by the Measurement And Treatment Research to Improve Cognition in Schizophrenia. In the UHR group, higher levels in two domains of the EASE (stream of consciousness and self-awareness) were found in comparison with help-seeking subjects. Correlational analysis corrected for possible confounding variables showed a strong association (p>0.001) between higher EASE scores and global functioning. A principal factor analysis with Varimax rotation yielded a two-factor solution, jointly accounting for 70.58% of the total variance in the UHR sample. The first factor was comprised of SOPS domains, while the second was comprised of EASE-total, EASE-10, and GAF variables. Our findings provide support for the notion that disorders of self-experience are present early in schizophrenia and are related to global functioning. As such, they may constitute a potential marker of risk supplementing the UHR approach.


Assuntos
Cognição , Transtornos Psicóticos/psicologia , Adolescente , Adulto , Transtornos Cognitivos/psicologia , Análise Fatorial , Feminino , Humanos , Masculino , Sintomas Prodrômicos , Fatores de Risco , Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico , Adulto Jovem
7.
Growth Factors ; 31(4): 115-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23777359

RESUMO

The nerve growth factor (NGF) belongs to a family of neurotrophic factors called neurotrophins. It was discovered as a molecule that stimulates the survival and maturation of developing neurons in the peripheral nervous system and has later been shown to protect adult neurons in the degenerating mammalian brain. Basic and clinical studies have been undertaken to use NGF as a therapeutic agent aimed at restoring and maintaining neuronal function in the central nervous system and to determine the mechanisms to safely deliver the molecule into the brain. Recent studies have also recognized that the role of NGF extends far beyond the horizon of nerve cells and even beyond the peripheral and central nervous system. Studies published from our laboratory have shown that topical application of NGF possesses a protective action on human pressure ulcer, corneal ulcer and glaucoma. Here, we will review these studies, supporting the therapeutic potential of NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/terapia , Animais , Úlcera da Córnea/metabolismo , Úlcera da Córnea/terapia , Glaucoma/metabolismo , Glaucoma/terapia , Humanos , Fator de Crescimento Neural/uso terapêutico , Doenças Neurodegenerativas/metabolismo
8.
Neural Regen Res ; 18(4): 773-778, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204836

RESUMO

Traumatic brain injury is one of the main causes of mortality and disability worldwide. Traumatic brain injury is characterized by a primary injury directly induced by the impact, which progresses into a secondary injury that leads to cellular and metabolic damages, starting in the first few hours and days after primary mechanical injury. To date, traumatic brain injury is not targetable by therapies aimed at preventing and/or limiting the outcomes of secondary damage but only by palliative therapies. Nerve growth factor is a neurotrophin targeting neuronal and non-neuronal cells, potentially useful in preventing/limiting the outcomes of secondary damage in traumatic brain injury. This potential has further increased in the last two decades since the possibility of reaching neurotrophin targets in the brain through its intranasal delivery has been exploited. Indeed, molecules intranasally delivered to the brain parenchyma may easily bypass the blood-brain barrier and reach their therapeutic targets in the brain, with favorable kinetics, dynamics, and safety profile. In the first part of this review, we aimed to report the traumatic brain injury-induced dysfunctional mechanisms that may benefit from nerve growth factor treatment. In the second part, we then exposed the experimental evidence relating to the action of nerve growth factor (both in vitro and in vivo, after administration routes other than intranasal) on some of these mechanisms. In the last part of the work, we, therefore, discussed the few manuscripts that analyze the effects of treatment with nerve growth factor, intranasally delivered to the brain parenchyma, on the outcomes of traumatic brain injury.

9.
Br J Pharmacol ; 180(15): 1949-1964, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36780920

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) comprises a primary injury directly induced by impact, which progresses into a secondary injury leading to neuroinflammation, reactive astrogliosis, and cognitive and motor damage. To date, treatment of TBI consists solely of palliative therapies that do not prevent and/or limit the outcomes of secondary damage and only stabilize the deficits. The neurotrophin, nerve growth factor (NGF), delivered to the brain parenchyma following intranasal application, could be a useful means of limiting or improving the outcomes of the secondary injury, as suggested by pre-clinical and clinical data. EXPERIMENTAL APPROACH: We evaluated the effect of acute intranasal treatment of young (20-postnatal day) rats, with NGF in a TBI model (weight drop/close head), aggravated by hypoxic complications. Immediately after the trauma, rats were intranasally treated with human recombinant NGF (50 µg·kg-1 ), and motor behavioural test, morphometric and biochemical assays were carried out 24 h later. KEY RESULTS: Acute intranasal NGF prevented the onset of TBI-induced motor disabilities, and decreased reactive astrogliosis, microglial activation and IL-1ß content, which after TBI develops to the same extent in the impact zone and the hypothalamus. CONCLUSION AND IMPLICATIONS: Intranasal application of NGF was effective in decreasing the motor dysfunction and neuroinflammation in the brain of young rats in our model of TBI. This work forms an initial pre-clinical evaluation of the potential of early intranasal NGF treatment in preventing and limiting the disabling outcomes of TBI, a clinical condition that remains one of the unsolved problems of paediatric neurology.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Criança , Ratos , Humanos , Animais , Fator de Crescimento Neural , Doenças Neuroinflamatórias , Gliose , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/tratamento farmacológico , Inflamação , Modelos Animais de Doenças
10.
Front Aging Neurosci ; 15: 1086487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845654

RESUMO

Background: Whole-body electromyostimulation (WB-EMS) was never previously applied to Parkinson's disease (PD) patients. This randomized controlled study aimed to find the most effective and safe WB-EMS training protocol for this population. Methods: Twenty-four subjects (age: 72.13 ± 6.20 years), were randomly assigned to three groups: a high-frequency WB-EMS strength training group (HFG) (rectangular stimulation at 85 Hz, 350 µs, 4 s stimulation/4 s rest), a low-frequency WB-EMS aerobic training group (LFG) (rectangular stimulation 7 Hz, 350 µs, with a continuous pulse duration), and an inactive control group (CG). Participants of the two experimental groups underwent 24 controlled WB-EMS training sessions, with a duration of 20 min each, during 12-week intervention. Serum growth factors (BDNF, FGF-21, NGF and proNGF), α-synuclein, physical performance and Parkinson's Disease Fatigue Scale (PFS-16) responses were analyzed to evaluate the pre-post variation and differences among groups. Results: Significant interactions of Time*Groups were detected for BDNF (Time*Groups p = 0.024; Time*CG, b = -628, IC95% = -1,082/-174, p = 0.008), FGF-21 (Time*Groups p = 0.009; Time*LFG b = 1,346, IC95% = 423/2268, p = 0.005), and α-synuclein (Time*Groups p = 0.019; Time*LFG b = -1,572, IC95% = -2,952/-192, p = 0.026). Post hoc analyses and comparisons of ΔS (post-pre), performed independently for each group, showed that LFG increased serum BDNF levels (+ 203 pg/ml) and decreased α-synuclein levels (-1,703 pg/ml), while HFG showed the opposite effects (BDNF: -500 pg/ml; α-synuclein: + 1,413 pg/ml). CG showed a significant BDNF reduction over time. Both LFG and HFG showed significant improvements in several physical performance outcomes and the LFG showed better results than HFG. Concerning PFS-16, significant differences over time (b = -0.4, IC95% = -0.8/-0.0, p = 0.046) and among groups (among all groups p < 0.001) were found, and the LFG exhibited better results than the HFG (b = -1.0, IC95% = -1.3/-0.7, p < 0.001), and CG (b = -1.7, IC95% = -2.0/-1.4, p < 0.001) with this last one that worsened over time. Conclusion: LFG training was the best choice for improving or maintaining physical performance, fatigue perception and variation in serum biomarkers. Clinical trial registration: https://www.clinicaltrials.gov/ct2/show/NCT04878679, identifier NCT04878679.

11.
Biol Direct ; 18(1): 24, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165387

RESUMO

BACKGROUND: Out-of-hospital cardiac arrest (OHCA) is one of the most dramatic events in pediatric age and, despite advanced neurointensive care, the survival rate remains low. Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. Nerve Growth Factor (NGF) is a neurotrophin potentially able to counteract many of the deleterious effects triggered by OHCA. Transcranial Direct Current Stimulation (tDCS) has been reported to be neuroprotective in many neurological diseases, such as motor deficit and cognitive impairment. Children with the diagnosis of chronic vegetative state after OHCA were enrolled. These patients underwent a combined treatment of intranasal administration of human recombinant NGF (hr-NGF), at a total dose of 50 gamma/kg, and tDCS, in which current intensity was increased from zero to 2 mA from the first 5 s of stimulation and maintained constant for 20 min. The treatment schedule was performed twice, at one month distance each. Neuroradiogical evaluation with Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG) and Power Spectral Density of the brain (PSD) was determined before the treatment and one month after the end. Neurological assessment was deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS: Three children with a chronic vegetative state secondary to OHCA were treated. The combined treatment with hr-NGF and tDCS improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary finger movements, improved facial mimicry and reaction to painful stimuli. No side effects were reported. CONCLUSIONS: These promising preliminary results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from OHCA and in patients with better baseline neurological conditions, in order to explore more thoroughly the benefits of this new approach on neuronal function recovery after OHCA.


Assuntos
Parada Cardíaca Extra-Hospitalar , Estimulação Transcraniana por Corrente Contínua , Humanos , Criança , Parada Cardíaca Extra-Hospitalar/terapia , Estado Vegetativo Persistente , Estimulação Transcraniana por Corrente Contínua/métodos , Fator de Crescimento Neural/uso terapêutico , Encéfalo
12.
Biol Direct ; 18(1): 61, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789391

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI) is one of the most dramatic events in pediatric age and, despite advanced neuro-intensive care, the survival rate of these patients remains low. Children suffering from severe TBI show long-term sequelae, more pronounced in behavioral, neurological and neuropsychological functions leading to, in the most severe cases, an unresponsive wakefulness syndrome (UWS). Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. In experimental animal models, human- recombinant Nerve Growth Factor (hr-NGF) promotes neural recovery supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated processes. Only a few studies reported the efficacy of intranasal hr-NGF administration in children with post- traumatic UWS. METHODS: Children with the diagnosis of post-traumatic UWS were enrolled. These patients underwent a treatment with intranasal hr-NGF administration, at a total dose of 50 gamma/kg, three times a day for 7 consecutive days. The treatment schedule was performed for 4 cycles, at one month distance each. Neuroradiogical evaluation by Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG), and Power Spectral Density (PSD) was determined before the treatment and one month after the end. Neurological assessment was also deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS: Three children with post-traumatic UWS were treated. hr-NGF administration improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary movements, facial mimicry, attention and verbal comprehension, ability to cry, cough reflex, oral motility, and feeding capacity, with a significant improvement of their neurological scores. No side effects were reported. CONCLUSION: These promising results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from severe TBI and in patients with better baseline neurological conditions, to explore more thoroughly the benefits of this new approach on neuronal function recovery after traumatic brain damage.


Assuntos
Fator de Crescimento Neural , Vigília , Animais , Humanos , Criança , Fator de Crescimento Neural/uso terapêutico , Fator de Crescimento Neural/metabolismo , Vigília/fisiologia , Encéfalo , Eletroencefalografia , Administração Intranasal
13.
J Transl Med ; 10: 239, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190582

RESUMO

The physiological role of the neurotrophin nerve growth factor (NGF) has been characterized, since its discovery in the 1950s, first in the sensory and autonomic nervous system, then in central nervous, endocrine and immune systems. NGF plays its trophic role both during development and in adulthood, ensuring the maintenance of phenotypic and functional characteristic of several populations of neurons as well as immune cells. From a translational standpoint, the action of NGF on cholinergic neurons of the basal forebrain and on sensory neurons in dorsal root ganglia first gained researcher's attention, in view of possible clinical use in Alzheimer's disease patients and in peripheral neuropathies respectively. The translational and clinical research on NGF have, since then, enlarged the spectrum of diseases that could benefit from NGF treatment, at the same time highlighting possible limitations in the use of the neurotrophin as a drug. In this review we give a comprehensive account for almost all of the clinical trials attempted until now by using NGF. A perspective on future development for translational research on NGF is also discussed, in view of recent proposals for innovative delivery strategies and/or for additional pathologies to be treated, such as ocular and skin diseases, gliomas, traumatic brain injuries, vascular and immune diseases.


Assuntos
Ensaios Clínicos como Assunto , Fatores de Crescimento Neural/uso terapêutico , Animais , Vias de Administração de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Fatores de Crescimento Neural/administração & dosagem
14.
Front Immunol ; 13: 818630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309353

RESUMO

We have recently provided new evidence for a role of p75NTR receptor and its preferential ligand proNGF in amplifying inflammatory responses in synovial mononuclear cells of chronic arthritis patients. In the present study, to better investigate how activation of the p75NTR/proNGF axis impacts synovial inflammation, we have studied the effects of proNGF on fibroblast-like synoviocytes (FLS), which play a central role in modulating local immune responses and in activating pro-inflammatory pathways. Using single cell RNA sequencing in synovial tissues from active and treatment-naïve rheumatoid arthritis (RA) patients, we demonstrated that p75NTR and sortilin, which form a high affinity receptor complex for proNGF, are highly expressed in PRG4pos lining and THY1posCOL1A1pos sublining fibroblast clusters in RA synovia but decreased in RA patients in sustained clinical remission. In ex vivo experiments we found that FLS from rheumatoid arthritis patients (RA-FLS) retained in vitro a markedly higher expression of p75NTR and sortilin than FLS from osteoarthritis patients (OA-FLS). Inflammatory stimuli further up-regulated p75NTR expression and induced endogenous production of proNGF in RA-FLS, leading to an autocrine activation of the proNGF/p75NTR pathway that results in an increased release of pro-inflammatory cytokines. Our data on the inhibition of p75NTR receptor, which reduced the release of IL-1ß, IL-6 and TNF-α, further confirmed the key role of p75NTR activation in regulating inflammatory cytokine production. In a set of ex vivo experiments, we used RA-FLS and cultured them in the presence of synovial fluids obtained from arthritis patients that, as we demonstrated, are characterized by a high concentration of proNGF. Our data show that the high levels of proNGF present in inflamed synovial fluids induced pro-inflammatory cytokine production by RA-FLS. The blocking of NGF binding to p75NTR using specific inhibitors led instead to the disruption of this pro-inflammatory loop, reducing activation of the p38 and JNK intracellular pathways and decreasing inflammatory cytokine production. Overall, our data demonstrate that an active proNGF/p75NTR axis promotes pro-inflammatory responses in synovial fibroblasts, thereby contributing to chronic synovial inflammation, and point to the possible use of p75NTR inhibitors as a novel therapeutic approach in chronic arthritis.


Assuntos
Artrite Reumatoide , Osteoartrite , Proteínas de Transporte/metabolismo , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso , Precursores de Proteínas , Receptores de Fator de Crescimento Neural
16.
Arch Ital Biol ; 149(2): 247-55, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21701996

RESUMO

The nerve growth factor (NGF) is a neurotrophin regulating the survival and function peripheral sensory and sympathetic neurons and of forebrain cholinergic neurons. Both peripheral neuropathies and brain cholinergic dysfunctions could benefit from NGFbased therapies, but the clinical use of NGF has been so far hampered by the development of important side effects, like hyperalgesia and autonomic dysfunctions. Acupuncture is a therapeutic technique and is a part of traditional Chinese medicine. Western descriptions of the clinical efficacy of acupuncture on pain, inflammation, motor dysfunction, mood disorders, and seizures are based on the stimulation of several classes of sensory afferent fibers and the consequent activation of physiological processes similar to those resulting from physical exercise or deep massage. Recently, it has been shown that peripheral sensory stimulation by electroacupuncture (EA) could improve brain NGF availability and utilization, at the same time counteracting the major sideeffects induced by NGF administration. This review focuses on the emerging links between EA and NGF with special emphasis on the work carried out in the last decade in our laboratory, investigating the role of NGF as a mediator of EA effects in the central nervous system and as a modulator of sensory and autonomic activity.


Assuntos
Eletroacupuntura/métodos , Inflamação/terapia , Fatores de Crescimento Neural/metabolismo , Doenças do Sistema Nervoso Periférico/terapia , Animais , Encéfalo/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/metabolismo
17.
Front Pharmacol ; 12: 754502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867367

RESUMO

Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer's disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson's disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.

18.
Neural Regen Res ; 16(9): 1740-1750, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33510063

RESUMO

Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.

19.
Nanoscale Adv ; 3(2): 418-431, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36131737

RESUMO

Carbon nanotubes (CNTs) are currently under active investigation for their use in several biomedical applications, especially in neurological diseases and nervous system injury due to their electrochemical properties. Nowadays, no CNT-based therapeutic products for internal use appear to be close to the market, due to the still limited knowledge on their fate after delivery to living organisms and, in particular, on their toxicological profile. The purpose of the present work was to address the distribution in the brain parenchyma of two intranasally delivered MWCNTs (MWCNTs 1 and a-MWCNTs 2), different from each other, the first being non electroconductive while the second results in being electroconductive. After intranasal delivery, the presence of CNTs was investigated in several brain areas, discriminating the specific cell types involved in the CNT uptake. We also aimed to verify the neuroprotective potential of the two types of CNTs, delivering them in rats affected by early diabetic encephalopathy and analysing the modulation of nerve growth factor metabolism and the effects of CNTs on the neuronal and glial phenotypes. Our findings showed that both CNT types, when intranasally delivered, reached numerous brain areas and, in particular, the limbic area that plays a crucial role in the development and progression of major neurodegenerative diseases. Furthermore, we demonstrated that electroconductive MWCNTs were able to exert neuroprotective effects through the modulation of a key neurotrophic factor and probably the improvement of neurodegeneration-related gliosis.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34065571

RESUMO

Parkinson's disease (PD) patients lead a sedentary lifestyle, being unable or unwilling to exercise conventionally, due to physical and mental limitations. The aim of this study was to assess the acute effects of a single session of whole-body electromyostimulation (WB-EMS) on the physical performances and serum levels of the neurotrophic factors in PD patients. Ten subjects (aged 72.60 ± 6.82) underwent 20 min of physical activity with superimposed WB-EMS and, after four weeks, the same protocol with no WB-EMS. WB-EMS was conducted with intermittent stimulation, with 4 s WB-EMS/4 s rest, at 85 Hz, 350 µs. A physical fitness assessment and blood samples collection, to evaluate neurotrophic factors' levels (BDNF, FGF21, proNGF, mNGF), were collected before and after the intervention. The RM-ANOVA showed significant improvements in sit-to-stand (p < 0.01), arm curl (p < 0.01), handgrip (p < 0.01) and soda pop test (p < 0.01) after the WB-EMS intervention. Higher proNFG serum levels were observed in the WB-EMS condition compared to the no WB-EMS after 60 min post-intervention (p = 0.0163). The effect of WB-EMS confirmed the electrostimulation ability to modulate the proNGF quantity. The positive impact of the WB-EMS protocol on physical functioning, and eye-hand coordination, makes this intervention a promising strategy to improve motor and non-motor symptoms in PD patients.


Assuntos
Terapia por Estimulação Elétrica , Doença de Parkinson , Exercício Físico , Força da Mão , Humanos , Força Muscular , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA