Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatol Res ; 53(4): 322-333, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495019

RESUMO

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease that obstructs the bile ducts and causes liver cirrhosis and cholangiocarcinoma. Efficient surrogate markers are required to measure disease progression. The cytokeratin 7 (K7) load in a liver specimen is an independent prognostic indicator that can be measured from digitalized slides using artificial intelligence (AI)-based models. METHODS: A K7-AI model 2.0 was built to measure the hepatocellular K7 load area of the parenchyma, portal tracts, and biliary epithelium. K7-stained PSC liver biopsy specimens (n = 295) were analyzed. A compound endpoint (liver transplantation, liver-related death, and cholangiocarcinoma) was applied in Kaplan-Meier survival analysis to measure AUC values and positive likelihood ratios for each histological variable detected by the model. RESULTS: The K7-AI model 2.0 was a better prognostic tool than plasma alkaline phosphatase, the fibrosis stage evaluated by Nakanuma classification, or K7 score evaluated by a pathologist based on the AUC values of measured variables. A combination of parameters, such as portal tract volume and area of K7-positive hepatocytes analyzed by the model, produced an AUC of 0.81 for predicting the compound endpoint. Portal tract volume measured by the model correlated with the histological fibrosis stage. CONCLUSIONS: The K7 staining of histological liver specimens in PSC provides significant information on disease outcomes through objective and reproducible data, including variables that cannot be measured by a human pathologist. The K7-AI model 2.0 could serve as a prognostic tool for clinical endpoints and as a surrogate marker in drug trials.

2.
Diagnostics (Basel) ; 12(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626187

RESUMO

An artificial intelligence (AI) algorithm for prostate cancer detection and grading was developed for clinical diagnostics on biopsies. The study cohort included 4221 scanned slides from 872 biopsy sessions at the HUS Helsinki University Hospital during 2016-2017 and a subcohort of 126 patients treated by robot-assisted radical prostatectomy (RALP) during 2016-2019. In the validation cohort (n = 391), the model detected cancer with a sensitivity of 98% and specificity of 98% (weighted kappa 0.96 compared with the pathologist's diagnosis). Algorithm-based detection of the grade area recapitulated the pathologist's grade group. The area of AI-detected cancer was associated with extra-prostatic extension (G5 OR: 48.52; 95% CI 1.11-8.33), seminal vesicle invasion (cribriform G4 OR: 2.46; 95% CI 0.15-1.7; G5 OR: 5.58; 95% CI 0.45-3.42), and lymph node involvement (cribriform G4 OR: 2.66; 95% CI 0.2-1.8; G5 OR: 4.09; 95% CI 0.22-3). Algorithm-detected grade group 3-5 prostate cancer depicted increased risk for biochemical recurrence compared with grade groups 1-2 (HR: 5.91; 95% CI 1.96-17.83). This study showed that a deep learning model not only can find and grade prostate cancer on biopsies comparably with pathologists but also can predict adverse staging and probability for recurrence after surgical treatment.

3.
Diagn Pathol ; 16(1): 41, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957930

RESUMO

BACKGROUND: The objective was to build a novel method for automated image analysis to locate and quantify the number of cytokeratin 7 (K7)-positive hepatocytes reflecting cholestasis by applying deep learning neural networks (AI model) in a cohort of 210 liver specimens. We aimed to study the correlation between the AI model's results and disease progression. The cohort of liver biopsies which served as a model of chronic cholestatic liver disease comprised of patients diagnosed with primary sclerosing cholangitis (PSC). METHODS: In a cohort of patients with PSC identified from the PSC registry of the University Hospital of Helsinki, their K7-stained liver biopsy specimens were scored by a pathologist (human K7 score) and then digitally analyzed for K7-positive hepatocytes (K7%area). The digital analysis was by a K7-AI model created in an Aiforia Technologies cloud platform. For validation, values were human K7 score, stage of disease (Metavir and Nakunuma fibrosis score), and plasma liver enzymes indicating clinical cholestasis, all subjected to correlation analysis. RESULTS: The K7-AI model results (K7%area) correlated with the human K7 score (0.896; p < 2.2e- 16). In addition, K7%area correlated with stage of PSC (Metavir 0.446; p < 1.849e- 10 and Nakanuma 0.424; p < 4.23e- 10) and with plasma alkaline phosphatase (P-ALP) levels (0.369, p < 5.749e- 5). CONCLUSIONS: The accuracy of the AI-based analysis was comparable to that of the human K7 score. Automated quantitative image analysis correlated with stage of PSC and with P-ALP. Based on the results of the K7-AI model, we recommend K7 staining in the assessment of cholestasis by means of automated methods that provide fast (9.75 s/specimen) quantitative analysis.


Assuntos
Biomarcadores/análise , Colestase/diagnóstico , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Queratina-7/análise , Adolescente , Adulto , Idoso , Criança , Colangite Esclerosante/complicações , Colestase/etiologia , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA