RESUMO
The properties of polycrystalline materials are often dominated by defects; two-dimensional (2D) crystals can even be divided and disrupted by a line defect1-3. However, 2D crystals are often required to be processed into films, which are inevitably polycrystalline and contain numerous grain boundaries, and therefore are brittle and fragile, hindering application in flexible electronics, optoelectronics and separation1-4. Moreover, similar to glass, wood and plastics, they suffer from trade-off effects between mechanical strength and toughness5,6. Here we report a method to produce highly strong, tough and elastic films of an emerging class of 2D crystals: 2D covalent organic frameworks (COFs) composed of single-crystal domains connected by an interwoven grain boundary on water surface using an aliphatic bi-amine as a sacrificial go-between. Films of two 2D COFs have been demonstrated, which show Young's moduli and breaking strengths of 56.7 ± 7.4 GPa and 73.4 ± 11.6 GPa, and 82.2 ± 9.1 N m-1 and 29.5 ± 7.2 N m-1, respectively. We predict that the sacrificial go-between guided synthesis method and the interwoven grain boundary will inspire grain boundary engineering of various polycrystalline materials, endowing them with new properties, enhancing their current applications and paving the way for new applications.
RESUMO
Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3â Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124â mAh g-1) and cycling life (>1000â cycles, 95 % capacity retention).
RESUMO
sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including energy-related devices and optoelectronics. However, so far, sp2c-COFs have been mainly limited to microcrystalline powders, and this consequently hampered their performances in devices. Herein, we report a simple and robust methodology to fabricate large-area, free-standing, and crystalline sp2c-COF films (TFPT-TMT and TB-TMT) on various solid substrates (e.g., fluorine-doped tin oxide, aluminum sheet, polyacrylonitrile membrane) by self-assembly monolayer-assisted surface-initiated Schiff-base-mediated aldol polycondensation (namely, SI-SBMAP). The resultant sp2c-COF films show lateral sizes up to 120 cm2 and tunable thickness from tens of nanometers to a few micrometers. Owing to the robust framework and highly ordered quasi-1D channels, the sp2c-COF membrane-based osmotic power generator presents an output power density of 14.1 W m-2 under harsh conditions, outperforming most reported COF membranes as well as commercialized benchmark devices (5 W m-2). This work demonstrates a simple and robust interfacial methodology for the fabrication of sp2c-COF films/membranes for green energy applications and potential optoelectronics.
RESUMO
Capacitive analogues of semiconductor diodes (CAPodes) present a new avenue for energy-efficient and nature-inspired next-generation computing devices. Here, we disclose the generalized concept for bias-direction-adjustable n- and p-CAPodes based on selective ion sieving. Controllable-unidirectional ion flux is realized by blocking electrolyte ions from entering sub-nanometer pores. The resulting CAPodes exhibit charge-storage characteristics with a high rectification ratio (96.29 %). The enhancement of capacitance is attributed to the high surface area and porosity of an omnisorbing carbon as counter electrode. Furthermore, we demonstrate the use of an integrated device in a logic gate circuit architecture to implement logic operations ('OR', 'AND'). This work demonstrates CAPodes as a generalized concept to achieve p-n and n-p analogue junctions based on selective ion electrosorption, provides a comprehensive understanding and highlights applications of ion-based diodes in ionologic architectures.
RESUMO
Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending. We use oligothiophenes with different numbers of thiophene rings as an example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller, effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this energy-level engineering strategy for optoelectronic devices.
RESUMO
The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables access to direct charge transport, dial-in lateral/vertical electronic devices, and the unveiling of transport mechanisms but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M = Cu or Fe) with an unprecedented edge-on layer orientation at the air/water interface. The edge-on structure formation is guided by the preorganization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2 size) Hall-effect measurement reveals a Hall mobility of â¼4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the development of various optoelectronic applications and the exploration of unique transport properties.
RESUMO
2D conjugated metal-organic frameworks (2D c-MOFs) are emerging as electroactive materials for chemiresistive sensors, but selective sensing with fast response/recovery is a challenge. Phthalocyanine-based Ni2 [MPc(NH)8 ] 2D c-MOF films are presented as active layers for polarity-selective chemiresisitors toward water and volatile organic compounds (VOCs). Surface-hydrophobic modification by grafting aliphatic alkyl chains on 2D c-MOF films decreases diffused analytes into the MOF backbone, resulting in a considerably accelerated recovery progress (from ca. 50 to ca. 10â s) during humidity sensing. Toward VOCs, the sensors deliver a polarity-selective response among alcohols but no signal for low-polarity aprotic hydrocarbons. The octadecyltrimethoxysilane-modified Ni2 [MPc(NH)8 ] based sensor displays high-performance methanol sensing with fast response (36â s)/recovery (13â s) and a detection limit as low as 10â ppm, surpassing reported room-temperature chemiresistors.
RESUMO
Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic-inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2 ), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60â fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation-π interaction between 2DP and graphene.
RESUMO
Metal-organic frameworks (MOFs) are hybrid materials based on crystalline coordination polymers that consist of metal ions connected by organic ligands. In addition to the traditional applications in gas storage and separation or catalysis, the long-range crystalline order in MOFs, as well as the tunable coupling between the organic and inorganic constituents, has led to the recent development of electrically conductive MOFs as a new generation of electronic materials. However, to date, the nature of charge transport in the MOFs has remained elusive. Here we demonstrate, using high-frequency terahertz photoconductivity and Hall effect measurements, Drude-type band-like transport in a semiconducting, π-d conjugated porous Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF, with a room-temperature mobility up to ~ 220 cm2 V-1 s-1. The temperature-dependent conductivity reveals that this mobility represents a lower limit for the material, as mobility is limited by impurity scattering. These results illustrate the potential for high-mobility semiconducting MOFs as active materials in thin-film optoelectronic devices.
RESUMO
Analyzing and interpreting the nanoscale morphology of semiconducting polymers is one of the key challenges for advancing in organic electronics. The orientation persistence length (OPL) as a tool to analyze orientation maps generated by photoemission electron microscopy (PEEM) - a state of the art tool for nanoscale imaging/spectroscopy - is presented here. The OPL is a way to quantify the chain orientation within the polymer film in a single graph. In this regard, it is a convincing method that will enable additional direct correlations between the chain orientation and electrical or optical parameters. In this report, we provide computational insights into the factors that contribute to the OPL.
RESUMO
We report on the graphene-assisted growth, crystallization, and phase transition of zinc phthalocyanine (ZnPc) vertically oriented single crystal nanopillars. Postcrystallization thermal annealing of the nanostructures results in a molecular packing change while maintaining the vertical orientation of the single crystals orthogonal to the underlying substrate. Grazing incidence X-ray diffraction and high-resolution TEM studies characterized this phase transition from a metastable crystal phase to the more stable ß-phase commonly observed in bulk crystals. These vertical arrays of crystalline nanopillars exhibit a high-surface-to-volume ratio, which is advantageous for applications such as gas sensors. We fabricated chemiresistor sensors with ZnPc nanopillars grown on graphene and demonstrated its selectivity for ammonia vapors, and improvement in sensitivity in the ß-phase crystal packing pillars due to their molecular orientation increasing the exposure of the Zn2+ ion to the ammonia analyte. This work highlights the first morphology-retentive phase transition in organic single crystal nanopillars through simple postprocessing thermal annealing. This study opens up the possibility of molecular packing control without large variations in morphology, a necessity for high-performance devices and establishing structure-property relations.
RESUMO
With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency. High-performance solution-sheared TC PEDOT:PSS films were used as patterned electrodes in capacitive touch sensors and organic photovoltaics to demonstrate practical viability in optoelectronic applications.
RESUMO
Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π-π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π-π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33 Å to 3.08 Å. We believe that 3.08 Å is the shortest π-π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π-π distance of 3.04 Å has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8 cm(2) V(-1) s(-1) for unstrained films to a high mobility of 4.6 cm(2) V(-1) s(-1) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.
RESUMO
We present scanning tunneling microscopy and spectroscopy (STM/STS) investigations of the electronic structures of different alkyl-substituted oligothiophenes on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes adopted distinct straight and bent conformations. By combining STS maps with STM images, we visualize, in real space, particle-in-a-box-like oligothiophene molecular orbitals. We demonstrate that different planar conformers with significant geometrical distortions of oligothiophene backbones surprisingly exhibit very similar electronic structures, indicating a low degree of conformation-induced electronic disorder. The agreement of these results with gas-phase density functional theory calculations implies that the oligothiophene interaction with the Au(111) surface is generally insensitive to molecular conformation.
RESUMO
High molecular weight PBTTT-C12 is blended with the pure trimer, BTTT-3, to enhance intergrain connectivity and charge transport. Analysis of the morphology and crystallinity of the blends shows that the polymer and oligomer are well-integrated, leading to high hole mobilities, greater than 0.1 cm(2) V(-1) s(-1), in films that contain as much as 83% oligomer.
RESUMO
The most efficient architecture for achieving high donor/acceptor interfacial area in organic photovoltaics (OPVs) would employ arrays of vertically interdigitated p- and n- type semiconductor nanopillars (NPs). Such morphology could have an advantage in bulk heterojunction systems; however, precise control of the dimension morphology in a crystalline, interpenetrating architecture has not yet been realized. Here we present a simple, yet facile, crystallization technique for the growth of vertically oriented NPs utilizing a modified thermal evaporation technique that hinges on a fast deposition rate, short substrate-source distance, and ballistic mass transport. A broad range of organic semiconductor materials is beneficial from the technique to generate NP geometries. Moreover, this technique can also be generalized to various substrates, namely, graphene, PEDOT-PSS, ZnO, CuI, MoO3, and MoS2. The advantage of the NP architecture over the conventional thin film counterpart is demonstrated with an increase of power conversion efficiency of 32% in photovoltaics. This technique will advance the knowledge of organic semiconductor crystallization and create opportunities for the fabrication and processing of NPs for applications that include solar cells, charge storage devices, sensors, and vertical transistors.
RESUMO
Due to the unique crystallinity of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), it is an excellent model polymer to study the structure-property relationship in organic devices, especially those relying on junctions of electron- and hole-transporting materials. Here, we report the synthesis and characterization of a series of monodisperse PBTTT oligothiophenes (n = 1-5) and systematically examine the evolution of crystalline behavior, morphology, and interaction with [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the molecular conjugation length increases. We discovered that fullerene intercalation occurs when there is enough free volume between the side chains to accommodate the fullerene molecule. The intercalation of PCBM is observed beyond BTTT-2 and longer oligomers, likely similar to that of PBTTT. Interestingly, both experiments and molecular simulations show that PCBM intercalation also appears to "catalyze" a more efficient packing of the BTTT-2 dimers. Crystal structure analysis revealed that the straight BTTT-2 side chains form one-dimensional (1D) channels that could perfectly host PCBM but, in the pure material, accommodate the interdigitated side chains from adjacent layers. In the blend with PCBM, these channels are maintained and enable the cocrystallization and intercalation of PCBM. This is the first time the actual sublattice cell of PCBM has been determined from the X-ray data, and demonstration the utility of the oligomers as model systems for their polymer counterparts. Among the organic photovoltaic devices (OPVs) made from the BTTT oligomers and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blends, the ones containing the BTTT-2 dimer exhibit the highest performance.
RESUMO
Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.