Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(9): 3836-3850, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36960552

RESUMO

COQ8A-ataxia is a rare form of neurodegenerative disorder due to mutations in the COQ8A gene. The encoded mitochondrial protein is involved in the regulation of coenzyme Q10 biosynthesis. Previous studies on the constitutive Coq8a-/- mice indicated specific alterations of cerebellar Purkinje neurons involving altered electrophysiological function and dark cell degeneration. In the present manuscript, we extend our understanding of the contribution of Purkinje neuron dysfunction to the pathology. By generating a Purkinje-specific conditional COQ8A knockout, we demonstrate that loss of COQ8A in Purkinje neurons is the main cause of cerebellar ataxia. Furthermore, through in vivo and in vitro approaches, we show that COQ8A-depleted Purkinje neurons have abnormal dendritic arborizations, altered mitochondria function and intracellular calcium dysregulation. Furthermore, we demonstrate that oxidative phosphorylation, in particular Complex IV, is primarily altered at presymptomatic stages of the disease. Finally, the morphology of primary Purkinje neurons as well as the mitochondrial dysfunction and calcium dysregulation could be rescued by CoQ10 treatment, suggesting that CoQ10 could be a beneficial treatment for COQ8A-ataxia.


Assuntos
Ataxia Cerebelar , Camundongos , Animais , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Células de Purkinje/patologia , Cálcio/metabolismo , Ataxia/tratamento farmacológico , Ataxia/genética , Ataxia/metabolismo , Mitocôndrias/metabolismo
2.
Ann Clin Transl Neurol ; 3(10): 752-768, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27752511

RESUMO

OBJECTIVE: We have previously described the generation of coxsackievirus and adenovirus receptor (α CAR)-targeted vector, and shown that intramuscular delivery in mouse leg muscles resulted in specific retrograde transduction of lumbar-motor neurons (MNs). Here, we utilized the α CAR-targeted vector to investigate the in vivo neuroprotective effects of lentivirally expressed IGF-1 for inducing neuronal survival and ameliorating the neuropathology and behavioral phenotypes of the SOD1G93A mouse model of ALS. METHODS: We produced cell factories of IGF-1 expressing lentiviral vectors (LVs) bearing α CAR or Vesicular Stomatitis Virus glycoprotein (VSV-G) on their surface so as to compare neuroprotection from MN transduced versus muscle transduced cells. We performed intramuscular delivery of either α CAR IGF-1 or VSVG IGF-1 LVs into key muscles of SOD1G93A mice prior to disease onset at day 28. Motor performance, coordination and gait analysis were assessed weekly. RESULTS: We observed substantial therapeutic efficacy only with the α CAR IGF-1 LV pretreatment with up to 50% extension of survival compared to controls. α CAR IGF-1 LV-treated animals retained muscle tone and had better motor performance during their prolonged survival. Histological analysis of spinal cord samples at end-stage further confirmed that α CAR IGF-1 LV treatment delays disease onset by increasing MN survival compared with age-matched controls. Intrastriatal injection of α CAR eGFP LV in rats leads to transduction of neurons and glia locally and neurons in olfactory bulb distally. INTERPRETATION: Our data are indicative of the efficacy of the α CAR IGF-1 LV in this model and support its candidacy for early noninvasive neuroprotective therapy in ALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA