Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 44(21): 5386-5389, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675014

RESUMO

We demonstrate phase control for vacuum-squeezed light at a 2 µm wavelength, which is a necessary technology for proposed future gravitational wave observatories. The control scheme allowed examination of noise behavior at frequencies below 1 kHz and indicated that squeezing below this frequency was limited by dark noise and scattered light. We directly measure 3.9±0.2 dB of squeezing from 2 kHz to 80 kHz and 14.2±0.3 dB of antisqueezing relative to the shot noise level. The observed maximum level of squeezing is currently limited by photodetector quantum efficiency and laser instabilities at this new wavelength for squeezed light. Accounting for all losses, we conclude the generation of 11.3 dB of squeezing at the optical parametric oscillator.

2.
Phys Rev Lett ; 123(23): 231107, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868462

RESUMO

The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).

3.
Science ; 372(6548): 1333-1336, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140386

RESUMO

The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.

4.
Rev Sci Instrum ; 87(6): 063104, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370423

RESUMO

With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA