Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574773

RESUMO

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia
2.
Nature ; 615(7951): 315-322, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755094

RESUMO

Further advances in cell engineering are needed to increase the efficacy of chimeric antigen receptor (CAR) and other T cell-based therapies1-5. As T cell differentiation and functional states are associated with distinct epigenetic profiles6,7, we hypothesized that epigenetic programming may provide a means to improve CAR T cell performance. Targeting the gene that encodes the epigenetic regulator ten-eleven translocation 2 (TET2)8 presents an interesting opportunity as its loss may enhance T cell memory9,10, albeit not cause malignancy9,11,12. Here we show that disruption of TET2 enhances T cell-mediated tumour rejection in leukaemia and prostate cancer models. However, loss of TET2 also enables antigen-independent CAR T cell clonal expansions that may eventually result in prominent systemic tissue infiltration. These clonal proliferations require biallelic TET2 disruption and sustained expression of the AP-1 factor BATF3 to drive a MYC-dependent proliferative program. This proliferative state is associated with reduced effector function that differs from both canonical T cell memory13,14 and exhaustion15,16 states, and is prone to the acquisition of secondary somatic mutations, establishing TET2 as a guardian against BATF3-induced CAR T cell proliferation and ensuing genomic instability. Our findings illustrate the potential of epigenetic programming to enhance T cell immunity but highlight the risk of unleashing unchecked proliferative responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proliferação de Células , Proteínas de Ligação a DNA , Dioxigenases , Imunoterapia Adotiva , Ativação Linfocitária , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Masculino , Diferenciação Celular/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/normas , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Leucemia/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/patologia , Epigênese Genética , Memória Imunológica , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
3.
Nature ; 583(7814): 127-132, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555459

RESUMO

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment1,2. Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells3,4 and has a beneficial role in wound-healing responses5,6. Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis1,7. Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity1,2,8-10. Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)11 as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Assuntos
Envelhecimento/patologia , Senescência Celular/imunologia , Cirrose Hepática/terapia , Longevidade/imunologia , Neoplasias Pulmonares/terapia , Receptores de Antígenos Quiméricos/imunologia , Rejuvenescimento , Linfócitos T/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Tetracloreto de Carbono , Feminino , Xenoenxertos , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
4.
Blood ; 141(22): 2698-2712, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745870

RESUMO

Cell therapies that rely on engineered immune cells can be enhanced by achieving uniform and controlled transgene expression in order to maximize T-cell function and achieve predictable patient responses. Although they are effective, current genetic engineering strategies that use γ-retroviral, lentiviral, and transposon-based vectors to integrate transgenes, unavoidably produce variegated transgene expression in addition to posing a risk of insertional mutagenesis. In the setting of chimeric antigen receptor (CAR) therapy, inconsistent and random CAR expression may result in tonic signaling, T-cell exhaustion, and variable T-cell persistence. Here, we report and validate an algorithm for the identification of extragenic genomic safe harbors (GSH) that can be efficiently targeted for DNA integration and can support sustained and predictable CAR expression in human peripheral blood T cells. The algorithm is based on 7 criteria established to minimize genotoxicity by directing transgene integration away from functionally important genomic elements, maximize efficient CRISPR/Cas9-mediated targeting, and avert transgene silencing over time. T cells engineered to express a CD19 CAR at GSH6, which meets all 7 criteria, are curative at low cell dose in a mouse model of acute lymphoblastic leukemia, matching the potency of CAR T cells engineered at the TRAC locus and effectively resisting tumor rechallenge 100 days after their infusion. The identification of functional extragenic GSHs thus expands the human genome available for therapeutic precision engineering.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Camundongos , Humanos , Vetores Genéticos , Imunoterapia Adotiva , Engenharia Celular , Genômica , Antígenos CD19
5.
Nature ; 568(7750): 112-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918399

RESUMO

Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence1. Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies1-3, and the results of early clinical trials suggest activity in multiple myeloma4. Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low1,2,4-9. Unlike the mechanisms that result in complete and permanent antigen loss6,8,9, those that lead to escape of antigen-low tumours remain unclear. Here, using mouse models of leukaemia, we show that CARs provoke reversible antigen loss through trogocytosis, an active process in which the target antigen is transferred to T cells, thereby decreasing target density on tumour cells and abating T cell activity by promoting fratricide T cell killing and T cell exhaustion. These mechanisms affect both CD28- and 4-1BB-based CARs, albeit differentially, depending on antigen density. These dynamic features can be offset by cooperative killing and combinatorial targeting to augment tumour responses to immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Leucemia/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/imunologia , Ligante 4-1BB/imunologia , Animais , Antígenos CD28/imunologia , Citotoxicidade Imunológica , Feminino , Imunoterapia Adotiva , Leucemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/imunologia , Linfócitos T/citologia
7.
Nature ; 543(7643): 113-117, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225754

RESUMO

Chimeric antigen receptors (CARs) are synthetic receptors that redirect and reprogram T cells to mediate tumour rejection. The most successful CARs used to date are those targeting CD19 (ref. 2), which offer the prospect of complete remission in patients with chemorefractory or relapsed B-cell malignancies. CARs are typically transduced into the T cells of a patient using γ-retroviral vectors or other randomly integrating vectors, which may result in clonal expansion, oncogenic transformation, variegated transgene expression and transcriptional silencing. Recent advances in genome editing enable efficient sequence-specific interventions in human cells, including targeted gene delivery to the CCR5 and AAVS1 loci. Here we show that directing a CD19-specific CAR to the T-cell receptor α constant (TRAC) locus not only results in uniform CAR expression in human peripheral blood T cells, but also enhances T-cell potency, with edited cells vastly outperforming conventionally generated CAR T cells in a mouse model of acute lymphoblastic leukaemia. We further demonstrate that targeting the CAR to the TRAC locus averts tonic CAR signalling and establishes effective internalization and re-expression of the CAR following single or repeated exposure to antigen, delaying effector T-cell differentiation and exhaustion. These findings uncover facets of CAR immunobiology and underscore the potential of CRISPR/Cas9 genome editing to advance immunotherapies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Imunoterapia/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Loci Gênicos/genética , Humanos , Ativação Linfocitária , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Pesquisa Translacional Biomédica
8.
J Virol ; 87(2): 1232-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23152528

RESUMO

The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA(+) domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dependovirus/química , Dependovirus/fisiologia , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrodinâmica , Microscopia Eletrônica , Ultracentrifugação
9.
PLoS Pathog ; 8(6): e1002764, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719256

RESUMO

The four Rep proteins of adeno-associated virus (AAV) orchestrate all aspects of its viral life cycle, including transcription regulation, DNA replication, virus assembly, and site-specific integration of the viral genome into the human chromosome 19. All Rep proteins share a central SF3 superfamily helicase domain. In other SF3 members this domain is sufficient to induce oligomerization. However, the helicase domain in AAV Rep proteins (i.e. Rep40/Rep52) as shown by its monomeric characteristic, is not able to mediate stable oligomerization. This observation led us to hypothesize the existence of an as yet undefined structural determinant that regulates Rep oligomerization. In this document, we described a detailed structural comparison between the helicase domains of AAV-2 Rep proteins and those of the other SF3 members. This analysis shows a major structural difference residing in the small oligomerization sub-domain (OD) of Rep helicase domain. In addition, secondary structure prediction of the linker connecting the helicase domain to the origin-binding domain (OBD) indicates the potential to form α-helices. We demonstrate that mutant Rep40 constructs containing different lengths of the linker are able to form dimers, and in the presence of ATP/ADP, larger oligomers. We further identified an aromatic linker residue (Y224) that is critical for oligomerization, establishing it as a conserved signature motif in SF3 helicases. Mutation of this residue critically affects oligomerization as well as completely abolishes the ability to produce infectious virus. Taken together, our data support a model where the linker residues preceding the helicase domain fold into an α-helix that becomes an integral part of the helicase domain and is critical for the oligomerization and function of Rep68/78 proteins through cooperative interaction with the OBD and helicase domains.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dependovirus/química , Dependovirus/genética , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/genética , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dependovirus/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo
10.
Cancer Discov ; 13(4): 829-843, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961206

RESUMO

The success of chimeric antigen receptor (CAR) T cells targeting B-cell malignancies propelled the field of synthetic immunology and raised hopes to treat solid tumors in a similar fashion. Antigen escape and the paucity of tumor-restricted CAR targets are recognized challenges to fulfilling this prospect. Recent advances in CAR T cell engineering extend the toolbox of chimeric receptors available to calibrate antigen sensitivity and combine receptors to create adapted tumor-sensing T cells. Emerging engineering strategies to lower the threshold for effective antigen recognition, when needed, and enable composite antigen recognition hold great promise for overcoming tumor heterogeneity and curbing off-tumor toxicities. SIGNIFICANCE: Improving the clinical efficacy of CAR T cell therapies will require engineering T cells that overcome heterogeneous and low-abundance target expression while minimizing reactivity to normal tissues. Recent advances in CAR design and logic gating are poised to extend the success of CAR T cell therapies beyond B-cell malignancies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias , Resultado do Tratamento , Receptores de Antígenos de Linfócitos T
11.
Sci Immunol ; 8(81): eadf1426, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36867678

RESUMO

Chimeric antigen receptor (CAR) T cell therapy relies on T cells that are guided by synthetic receptors to target and lyse cancer cells. CARs bind to cell surface antigens through an scFv (binder), the affinity of which is central to determining CAR T cell function and therapeutic success. CAR T cells targeting CD19 were the first to achieve marked clinical responses in patients with relapsed/refractory B cell malignancies and to be approved by the U.S. Food and Drug Administration (FDA). We report cryo-EM structures of CD19 antigen with the binder FMC63, which is used in four FDA-approved CAR T cell therapies (Kymriah, Yescarta, Tecartus, and Breyanzi), and the binder SJ25C1, which has also been used extensively in multiple clinical trials. We used these structures for molecular dynamics simulations, which guided creation of lower- or higher-affinity binders, and ultimately produced CAR T cells endowed with distinct tumor recognition sensitivities. The CAR T cells exhibited different antigen density requirements to trigger cytolysis and differed in their propensity to prompt trogocytosis upon contacting tumor cells. Our work shows how structural information can be applied to tune CAR T cell performance to specific target antigen densities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Estados Unidos , Humanos , Antígenos de Superfície , Linfócitos B , Morte Celular
12.
Cancer Cell ; 41(11): 1871-1891.e6, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37802054

RESUMO

Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.


Assuntos
Leucemia Mieloide Aguda , Linfócitos T , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Imunoterapia Adotiva , Células-Tronco Hematopoéticas , Receptores Mitogênicos/metabolismo , Lectinas Tipo C
13.
Nat Biomed Eng ; 6(11): 1284-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941192

RESUMO

The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αß+ CAR T cells that perform similarly to CD8αß+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αß+ T cells for a broad range of immunotherapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Linfócitos T , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Antígenos de Linfócitos T , Antígenos CD8/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
14.
Nat Med ; 28(2): 345-352, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027758

RESUMO

Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR. We demonstrate that these HLA-independent T cell receptors (HIT receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based CARs, the most sensitive design to date, can provide. We demonstrate that the functional persistence of HIT T cells can be augmented by constitutive coexpression of CD80 and 4-1BBL. Finally, we validate the increased antigen sensitivity afforded by HIT receptors in xenograft mouse models of B cell leukemia and acute myeloid leukemia, targeting CD19 and CD70, respectively. Overall, HIT receptors are well suited for targeting cell surface antigens of low abundance.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Antígenos de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Med ; 28(1): 63-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980909

RESUMO

ß-Thalassemias are inherited anemias that are caused by the absent or insufficient production of the ß chain of hemoglobin. Here we report 6-8-year follow-up of four adult patients with transfusion-dependent ß-thalassemia who were infused with autologous CD34+ cells transduced with the TNS9.3.55 lentiviral globin vector after reduced-intensity conditioning (RIC) in a phase 1 clinical trial ( NCT01639690) . Patients were monitored for insertional mutagenesis and the generation of a replication-competent lentivirus (safety and tolerability of the infusion product after RIC-primary endpoint) and engraftment of genetically modified autologous CD34+ cells, expression of the transduced ß-globin gene and post-transplant transfusion requirements (efficacy-secondary endpoint). No unexpected safety issues occurred during conditioning and cell product infusion. Hematopoietic gene marking was very stable but low, reducing transfusion requirements in two patients, albeit not achieving transfusion independence. Our findings suggest that non-myeloablative conditioning can achieve durable stem cell engraftment but underscore a minimum CD34+ cell transduction requirement for effective therapy. Moderate clonal expansions were associated with integrations near cancer-related genes, suggestive of non-erythroid activity of globin vectors in stem/progenitor cells. These correlative findings highlight the necessity of cautiously monitoring patients harboring globin vectors.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Globinas/genética , Lentivirus/genética , Condicionamento Pré-Transplante/métodos , Talassemia beta/terapia , Adolescente , Adulto , Antígenos CD34/genética , Transfusão de Sangue , Feminino , Humanos , Masculino , Transdução Genética , Adulto Jovem
16.
Br J Haematol ; 154(6): 715-27, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21707580

RESUMO

Sickle cell anaemia is a severe inherited blood disorder for which there is presently no curative therapy other than allogeneic haematopoietic stem cell (HSC) transplantation. This therapeutic option, however, is not available to most patients because of the lack of a matched related donor. Different genetic strategies aiming to treat the anaemia and prevent sickling are under investigation. They include strategies to transfer a regulated globin gene in autologous HSCs-the most developed approach, which is about to undergo clinical evaluation-, and strategies to either restore endogenous HBG expression, repair or eliminate HBB(S) mutant transcripts, or correct the sickle mutation in HSCs or induced pluripotent stem cells. Their common ultimate goals are to afford therapeutic levels of HbA or HbF in the erythroid progeny of autologous HSCs (sufficient to prevent pathological sickling) and engraft the genetically modified HSCs with minimal short-term toxicity (primarily caused by the conditioning regimen) and long-term toxicity (primarily caused by genotoxicity). We discuss here the status of application of these technologies, outlining recent advances and the hurdles that lay ahead.


Assuntos
Anemia Falciforme/terapia , Terapia Genética/métodos , Anemia Falciforme/genética , Animais , Modelos Animais de Doenças , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Vetores Genéticos , Globinas/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lentivirus/genética , Camundongos
17.
PLoS Pathog ; 5(7): e1000513, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593381

RESUMO

Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag) and bovine papillomavirus (BPV) E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID) and an AAA(+) motor domain. The AAA(+) motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA(+) domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration.


Assuntos
DNA de Cadeia Simples/química , DNA Viral/química , Proteínas de Ligação a DNA/química , Dependovirus/fisiologia , Proteínas Virais/química , Antígenos Transformantes de Poliomavirus/química , Antígenos Transformantes de Poliomavirus/metabolismo , Microscopia Crioeletrônica , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Conformação de Ácido Nucleico , Multimerização Proteica , Proteínas Virais/metabolismo
18.
Sci Transl Med ; 13(623): eabh1962, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878825

RESUMO

Despite the high remission rates achieved using T cells bearing a chimeric antigen receptor (CAR) against hematogical malignancies, there is still a considerable proportion of patients who eventually experience tumor relapse. Clinical studies have established that mechanisms of treatment failure include the down-regulation of target antigen expression and the limited persistence of effective CAR T cells. We hypothesized that dual targeting mediated by a CAR and a chimeric costimulatory receptor (CCR) could simultaneously enhance T cell cytotoxicity and improve durability. Concomitant high-affinity engagement of a CD38-binding CCR enhanced the cytotoxicity of BCMA-CAR and CD19-CAR T cells by increasing their functional binding avidity. In comparison to second-generation BCMA-CAR or CD19-CAR T cells, double-targeted CAR + CD38-CCR T cells exhibited increased sensitivity to recognize and lyse tumor variants of multiple myeloma and acute lymphoblastic leukemia with low antigen density in vitro. In addition, complimentary costimulation by 4-1BB and CD28 endodomains provided by the CAR and CCR combination conferred increased cytokine secretion and expansion and improved persistence in vivo. The cumulatively improved properties of CAR + CCR T cells enabled the in vivo eradication of antigen-low tumor clones, which were otherwise resistant to treatment with conventional CAR T cells. Therefore, multiplexing targeting and costimulation through the combination of a CAR and a CCR is a powerful strategy to improve the clinical outcomes of CAR T cells by enhancing cytotoxic efficacy and persistence, thus preventing relapses of tumor clones with low target antigen density.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
20.
Hematol Oncol Clin North Am ; 32(2): 329-342, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29458735

RESUMO

The ß-thalassemias are inherited blood disorders that result from insufficient production of the ß-chain of hemoglobin. More than 200 different mutations have been identified. ß-Thalassemia major requires life-long transfusions. The only cure for severe ß-thalassemia is to provide patients with hematopoietic stem cells. Globin gene therapy promises a curative autologous stem cell transplantation without the immunologic complications of allogeneic transplantation. The future directions of gene therapy include enhancement of lentiviral vector-based approaches, fine tuning of the conditioning regimen, and the design of safer vectors. Progress in genetic engineering bodes well for finding a cure for severe globin disorders.


Assuntos
Edição de Genes , Terapia Genética , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia , Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA