Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Health Qual Life Outcomes ; 21(1): 77, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474950

RESUMO

BACKGROUND: Neurostimulation is a highly effective therapy for the treatment of chronic Intractable pain, however, due to the complexity of pain, measuring a subject's long-term response to the therapy remains difficult. Frequent measurement of patient-reported outcomes (PROs) to reflect multiple aspects of subjects' pain is a crucial step in determining therapy outcomes. However, collecting full-length PROs is burdensome for both patients and clinicians. The objective of this work is to identify the reduced set of questions from multiple validated PROs that can accurately characterize chronic pain patients' responses to neurostimulation therapies. METHODS: Validated PROs were used to capture pain, physical function and disability, as well as psychometric, satisfaction, and global health metrics. PROs were collected from 509 patients implanted with Spinal Cord Stimulation (SCS) or Dorsal Root Ganglia (DRG) neurostimulators enrolled in the prospective, international, post-market REALITY study (NCT03876054, Registration Date: March 15, 2019). A combination of linear regression, Pearson's correlation, and factor analysis were used to eliminate highly correlated questions and find the minimal meaningful set of questions within the predefined domains of each scale. RESULTS: The shortened versions of the questionnaires presented almost identical accuracy for classifying the therapy outcomes as compared to the validated full-length versions. In addition, principal component analysis was performed on all the PROs and showed a robust clustering of pain intensity, psychological factors, physical function, and sleep across multiple PROs. A selected set of questions captured from multiple PROs can provide adequate information for measuring neurostimulation therapy outcomes. CONCLUSIONS: PROs are important subjective measures to evaluate the physiological and psychological aspects of pain. However, these measures are cumbersome to collect. These shorter and more targeted PROs could result in better patient engagement, and enhanced and more frequent data collection processes for digital health platforms that minimize patient burden while increasing therapeutic benefits for chronic pain patients.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Humanos , Dor Crônica/terapia , Dor Crônica/psicologia , Gânglios Espinais/fisiologia , Manejo da Dor , Medidas de Resultados Relatados pelo Paciente , Estudos Prospectivos , Qualidade de Vida , Resultado do Tratamento , Estudos Clínicos como Assunto
2.
Bioelectron Med ; 9(1): 13, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340467

RESUMO

BACKGROUND: Neurostimulation is an effective therapy for treating and management of refractory chronic pain. However, the complex nature of pain and infrequent in-clinic visits, determining subject's long-term response to the therapy remains difficult. Frequent measurement of pain in this population can help with early diagnosis, disease progression monitoring, and evaluating long-term therapeutic efficacy. This paper compares the utilization of the common subjective patient-reported outcomes with objective measures captured through a wearable device for predicting the response to neurostimulation therapy. METHOD: Data is from the ongoing international prospective post-market REALITY clinical study, which collects long-term patient-reported outcomes from 557 subjects implanted by Spinal Cord Stimulator (SCS) or Dorsal Root Ganglia (DRG) neurostimulators. The REALITY sub-study was designed for collecting additional wearables data on a subset of 20 participants implanted with SCS devices for up to six months post implantation. We first implemented a combination of dimensionality reduction algorithms and correlation analyses to explore the mathematical relationships between objective wearable data and subjective patient-reported outcomes. We then developed machine learning models to predict therapy outcome based on the subject's response to the numerical rating scale (NRS) or patient global impression of change (PGIC). RESULTS: Principal component analysis showed that psychological aspects of pain were associated with heart rate variability, while movement-related measures were strongly associated with patient-reported outcomes related to physical function and social role participation. Our machine learning models using objective wearable data predicted PGIC and NRS outcomes with high accuracy without subjective data. The prediction accuracy was higher for PGIC compared with the NRS using subjective-only measures primarily driven by the patient satisfaction feature. Similarly, the PGIC questions reflect an overall change since the study onset and could be a better predictor of long-term neurostimulation therapy outcome. CONCLUSIONS: The significance of this study is to introduce a novel use of wearable data collected from a subset of patients to capture multi-dimensional aspects of pain and compare the prediction power with the subjective data from a larger data set. The discovery of pain digital biomarkers could result in a better understanding of the patient's response to therapy and their general well-being.

3.
Stroke Res Treat ; 2021: 5546766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457232

RESUMO

After short-term, acute-care hospitalization for stroke, patients may be discharged home or other facilities for continued medical or rehabilitative management. The site of postacute care affects overall mortality and functional outcomes. Determining discharge disposition is a complex decision by the healthcare team. Early prediction of discharge destination can optimize poststroke care and improve outcomes. Previous attempts to predict discharge disposition outcome after stroke have limited clinical validations. In this study, readmission status was used as a measure of the clinical significance and effectiveness of a discharge disposition prediction. Low readmission rates indicate proper and thorough care with appropriate discharge disposition. We used Medicare beneficiary data taken from a subset of base claims in the years of 2014 and 2015 in our analyses. A predictive tool was created to determine discharge disposition based on risk scores derived from the coefficients of multivariable logistic regression related to an adjusted odds ratio. The top five risk scores were admission from a skilled nursing facility, acute heart attack, intracerebral hemorrhage, admission from "other" source, and an age of 75 or older. Validation of the predictive tool was accomplished using the readmission rates. A 75% probability for facility discharge corresponded with a risk score of greater than 9. The prediction was then compared to actual discharge disposition. Each cohort was further analyzed to determine how many readmissions occurred in each group. Of the actual home discharges, 95.7% were predicted to be there. However, only 47.8% of predictions for home discharge were actually discharged home. Predicted discharge to facility had 15.9% match to the actual facility discharge. The scenario of actual discharge home and predicted discharge to facility showed that 186 patients were readmitted. Following the algorithm in this scenario would have recommended continued medical management of these patients, potentially preventing these readmissions.

4.
Orthop J Sports Med ; 9(10): 23259671211051722, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34722788

RESUMO

BACKGROUND: After a sport-related concussion (SRC), the risk for lower extremity injury is approximately 2 times greater, and the risk for another SRC may be as much as 3 to 5 times greater. PURPOSE: To assess the predictive validity of screening methods for identification of individual athletes who possess an elevated risk of SRC. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: Metrics derived from a smartphone flanker test software application and self-ratings of both musculoskeletal function and overall wellness were acquired from American high school and college football players before study participation. Occurrences of core or lower extremity injury (CLEI) and SRC were documented for all practice sessions and games for 1 season. Receiver operating characteristic and logistic regression analyses were used to identify variables that provided the greatest predictive accuracy for CLEI or SRC occurrence. RESULTS: Overall, there were 87 high school and 74 American college football players included in this study. At least 1 CLEI was sustained by 45% (39/87) of high school players and 55% (41/74) of college players. Predictors of CLEI included the flanker test conflict effect ≥69 milliseconds (odds ratio [OR], 2.12; 90% CI, 1.24-3.62) and a self-reported lifetime history of SRC (OR, 1.70; 90% CI, 0.90-3.23). Of players with neither risk factor, only 38% (29/77) sustained CLEI compared with 61% (51/84) of players with 1 or both of the risk factors (OR, 2.56; 90% CI, 1.50-4.36). SRC was sustained by 7 high school players and 3 college players. Predictors of SRC included the Overall Wellness Index score ≤78 (OR, 9.83; 90% CI, 3.17-30.50), number of postconcussion symptoms ≥4 (OR, 8.35; 90% CI, 2.71-25.72), the Sport Fitness Index score ≤78 (OR, 5.16; 90% CI, 1.70-15.65), history of SRC (OR, 4.03; 90% CI, 1.35-12.03), and the flanker test inverse efficiency ratio ≥1.7 (OR, 3.19; 90% CI, 1.08-9.47). CONCLUSION: Survey responses and smartphone flanker test metrics predicted greater injury incidence among individual football players classified as high-risk compared with that for players with a low-risk profile.

5.
Sci Rep ; 10(1): 8377, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433481

RESUMO

Wrist posture impacts the muscle lengths and moment arms of the extrinsic finger muscles that cross the wrist. As a result, the electromyographic (EMG) activity associated with digit movement at different wrist postures must also change. We sought to quantify the posture-dependence of extrinsic finger muscle activity using bipolar fine-wire electrodes inserted into the extrinsic finger muscles of able-bodied subjects during unrestricted wrist and finger movements across the entire range of motion. EMG activity of all the recorded finger muscles were significantly different (p < 0.05, ANOVA) when performing the same digit movement in five different wrist postures. Depending on the wrist posture, EMG activity changed by up to 70% in individual finger muscles for the same movement, with the highest levels of activity observed in finger extensors when the wrist was extended. Similarly, finger flexors were most active when the wrist was flexed. For the finger flexors, EMG variations with wrist posture were most prominent for index finger muscles, while the EMG activity of all finger extensor muscles were modulated in a similar way across all digits. In addition to comprehensively quantifying the effect of wrist posture on extrinsic finger EMG activity in able-bodied subjects, these results may contribute to designing control algorithms for myoelectric prosthetic hands in the future.


Assuntos
Eletromiografia/métodos , Junção Neuromuscular/fisiologia , Adulto , Algoritmos , Análise de Variância , Fenômenos Biomecânicos , Feminino , Dedos/fisiologia , Humanos , Masculino , Neurofisiologia , Punho/fisiologia
6.
IEEE Trans Neural Syst Rehabil Eng ; 26(4): 865-873, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29641391

RESUMO

Many activities of daily living require a high level of neuromuscular coordination and balance control to avoid falls. Complex musculoskeletal models paired with detailed neuromuscular simulations complement experimental studies and uncover principles of coordinated and uncoordinated movements. Here, we created a closed-loop forward dynamic simulation framework that utilizes a detailed musculoskeletal model (19 degrees of freedom, and 92 muscles) to synthesize human balance responses after support-surface perturbation. In addition, surrogate response models of task-level experimental kinematics from two healthy subjects were provided as inputs to our closed-loop simulations to inform the design of the task-level controller. The predicted muscle activations and the resulting synthesized subject joint angles showed good conformity with the average of experimental trials. The simulated whole-body center of mass displacements, generated from a single kinematics trial per perturbation direction, were on average, within 7 mm (anterior perturbations) and 13 mm (posterior perturbations) of experimental displacements. Our results confirmed how a complex subject-specific movement can be reconstructed by sequencing and prioritizing multiple task-level commands to achieve desired movements. By combining the multidisciplinary approaches of robotics and biomechanics, the platform demonstrated here offers great potential for studying human movement control and subject-specific outcome prediction.


Assuntos
Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Atividades Cotidianas , Adulto , Algoritmos , Fenômenos Biomecânicos , Eletromiografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Modelos Biológicos , Reprodutibilidade dos Testes , Robótica , Tendões/fisiologia , Adulto Jovem
7.
Gait Posture ; 43: 24-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26669947

RESUMO

Stiff-knee gait is a troublesome movement disorder among children with cerebral palsy (CP), where peak swing phase knee flexion is diminished due to over-activity of the rectus femoris muscle. A common treatment for stiff-knee gait, rectus femoris transfer surgery, moves the muscle's distal tendon from the patella to the sartorius insertion on the tibia. As a biarticular muscle, rectus femoris may play a role in motor control and have unrecognized benefits for maintaining balance. We used musculoskeletal modeling, neuromuscular control, and forward dynamic simulation to investigate the role of rectus femoris tendon transfer surgery on balance recovery after support-surface perturbations for children with CP adopting two different crouched postures. We combined both high-level supraspinal and low-level spinal signals to generate 92 muscle excitations for tracking experimental whole body center of mass positions and velocities. Stability during balance recovery was evaluated by the minimum distance between the extrapolated center of mass and base of support boundary (bmin) and the minimum time to reach the boundary (TtBmin). The balance recovery of pre-surgical simulations (bmin=2.3+1.1cm, TtBmin=0.2+0.1s) were different (p=0.02), on average, than post-surgical simulations (bmin=-4.9+11.4cm, TtBmin=-0.1+0.3s) of rectus femoris transfers. The moderate crouch simulations (bmin=2.4+0.4cm, TtBmin=0.2+0.03s) were more stable than the mild crouch simulations (bmin=1.2+0.3cm, TtBmin=0.1+0.02s) following anterior translations of the support surface. These findings suggest that tendon transfer of rectus femoris affects balance recovery in children with CP.


Assuntos
Paralisia Cerebral/cirurgia , Transtornos Neurológicos da Marcha/cirurgia , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Músculo Quadríceps/cirurgia , Transferência Tendinosa/métodos , Paralisia Cerebral/fisiopatologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Masculino , Patela/cirurgia
8.
J Biomech ; 45(8): 1517-21, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22464351

RESUMO

Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions.


Assuntos
Articulações/fisiologia , Modelos Biológicos , Movimento/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Software , Tendões/fisiologia , Animais , Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Humanos , Linguagens de Programação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA