RESUMO
Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.
Assuntos
Processamento Alternativo , Inteligência Artificial , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Oligonucleotídeos Antissenso/genética , Movimento Celular/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Oligonucleotídeos/genética , FemininoRESUMO
The processes involved in regeneration of cutaneous compared to corneal tissues involve different intrinsic mechanisms. Importantly, cutaneous wounds involve healing by angiogenesis but vascularization of the cornea obscures vision. Previous studies showed that topically applied calreticulin (CALR) healed full-thickness excisional animal wounds by a tissue regenerative process markedly enhancing repair without evoking angiogenesis. In the current study, the application of CALR in a rabbit corneal injury model: (1) accelerated full wound closure by 3 days (2) accelerated delayed healing caused by corticosteroids, routinely used to prevent post-injury inflammation, by 6 days and (3) healed wounds without vascularization or fibrosis/hazing. In vitro, CALR stimulated proliferation of human corneal epithelial cells (CE) and corneal stromal cells (keratocytes) by 1.5-fold and 1.4-fold, respectively and induced migration of CE cells and keratocytes, by 72% and 85% compared to controls of 44% and 59%, respectively. As a marker of decreased fibrosis, CALR treated corneal wounds showed decreased immunostaining for α-smooth muscle actin (α-SMA) by keratocytes and following CALR treatment in vitro, decreased the levels of TGF-ß2 in human CE cells and α-SMA in keratocytes. CALR has the potential to be a novel therapeutic both, to accelerate corneal healing from various injuries and in conjunction with corticosteroids.
RESUMO
Topical application of extracellular calreticulin (eCRT), an ER chaperone protein, in animal models enhances wound healing and induces tissue regeneration evidenced by epidermal appendage neogenesis and lack of scarring. In addition to chemoattraction of cells critical to the wound healing process, eCRT induces abundant neo-dermal extracellular matrix (ECM) formation by 3 days post-wounding. The purpose of this study was to determine the mechanisms involved in eCRT induction of ECM. In vitro, eCRT strongly induces collagen I, fibronectin, elastin, α-smooth muscle actin in human adult dermal (HDFs) and neonatal fibroblasts (HFFs) mainly via TGF-ß canonical signaling and Smad2/3 activation; RAP, an inhibitor of LRP1 blocked eCRT ECM induction. Conversely, eCRT induction of α5 and ß1 integrins was not mediated by TGF-ß signaling nor inhibited by RAP. Whereas eCRT strongly induces ECM and integrin α5 proteins in K41 wild-type mouse embryo fibroblasts (MEFs), CRT null MEFs were unresponsive. The data show that eCRT induces the synthesis and release of TGF-ß3 first via LRP1 or other receptor signaling and later induces ECM proteins via LRP1 signaling subsequently initiating TGF-ß receptor signaling for intracellular CRT (iCRT)-dependent induction of TGF-ß1 and ECM proteins. In addition, TGF-ß1 induces 2-3-fold higher level of ECM proteins than eCRT. Whereas eCRT and iCRT converge for ECM induction, we propose that eCRT attenuates TGF-ß-mediated fibrosis/scarring to achieve tissue regeneration.
Assuntos
Calreticulina/metabolismo , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fibrose/metabolismo , Humanos , Camundongos , Transdução de Sinais/fisiologia , Engenharia Tecidual/métodos , Cicatrização/fisiologiaRESUMO
To gain insight into the cellular and molecular interactions mediating the desmoplastic reaction and aggressive malignancy of mass-forming intrahepatic cholangiocarcinoma (ICC), we modeled ICC desmoplasia and progression in vitro. A unique three-dimensional (3D) organotypic culture model was established; within a dilute collagen-type I hydrogel, a novel clonal strain of rat cancer-associated myofibroblasts (TDFSM) was co-cultured with a pure rat cholangiocarcinoma cell strain (TDECC) derived from the same ICC type as TDFSM. This 3D organotypic culture model reproduced key features of desmoplastic reaction that closely mimicked those of the in situ tumor, as well as promoted cholangiocarcinoma cell growth and progression. Our results supported a resident liver mesenchymal cell origin of the TDFSM cells, which were not neoplastically transformed. Notably, 3D co-culturing of TDECC cells with TDFSM cells provoked the formation of a dense fibrocollagenous stroma in vitro that was associated with significant increases in both proliferative TDFSM myofibroblastic cells and TDECC cholangiocarcinoma cells accumulating within the gel matrix. This dramatic desmoplastic ICC-like phenotype, which was not observed in the TDECC or TDFSM controls, was highly dependent on transforming growth factor (TGF)-ß, but not promoted by TGF-α. However, TGF-α was determined to be a key factor for promoting cholangiocarcinoma cell anaplasia, hyperproliferation, and higher malignant grading in this 3D culture model of desmoplastic ICC.
Assuntos
Neoplasias dos Ductos Biliares/etiologia , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/etiologia , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Humanos , Cariótipo , Masculino , Miofibroblastos/metabolismo , Ratos Endogâmicos F344 , Células Tumorais CultivadasRESUMO
Periostin and mesothelin have each been suggested to be predictors of poor survival for patients with intrahepatic cholangiocarcinoma, although the clinical prognostic value of both of these biomarkers remains uncertain. The aim of the current study was to investigate these biomarkers for their potential to act as tumor progression factors when assessed in orthotopic tumor and three-dimensional culture models of rat cholangiocarcinoma progression. Using our orthotopic model, we demonstrated a strong positive correlation between tumor and serum periostin and mesothelin and increasing liver tumor mass and associated peritoneal metastases that also reflected differences in cholangiocarcinoma cell aggressiveness and malignant grade. Periostin immunostaining was most prominent in the desmoplastic stroma of larger sized more aggressive liver tumors and peritoneal metastases. In comparison, mesothelin was more highly expressed in the cholangiocarcinoma cells; the slower growing more highly differentiated liver tumors exhibited a luminal cancer cell surface immunostaining for this biomarker, and the rapidly growing less differentiated liver and metastatic tumor masses largely showed cytoplasmic mesothelin immunoreactivity. Two molecular weight forms of mesothelin were identified, one at â¼40 kDa and the other, a more heavily glycosylated form, at â¼50 kDa. Increased expression of the 40-kDa mesothelin over that of the 50 kDa form predicted increased malignant progression in both the orthotopic liver tumors and in cholangiocarcinoma cells of different malignant potential in three-dimensional culture. Moreover, coculturing of cancer-associated myofibroblasts with cholangiocarcinoma cells promoted overexpression of the 40-kDa mesothelin, which correlated with enhanced malignant progression in vitro. Conclusion: Periostin and mesothelin are useful predictors of tumor progression in our rat desmoplastic cholangiocarcinoma models. This supports their relevance to human intrahepatic cholangiocarcinoma. (Hepatology Communications 2018;2:155-172).
RESUMO
High extra-virgin olive oil (EVOO) and corn oil diets differentially modulate experimental mammary carcinogenesis. We have investigated their influence on the initiation stage through the modulation of the expression of xenobiotic-metabolizing enzymes (XMEs) in the liver and the mammary gland. Female Sprague-Dawley rats were fed a low-fat (LF), high corn oil (HCO), or high EVOO (HOO) diet from weaning and gavaged with 7,12-dimethylbenz(a)anthracene (DMBA). The HCO diet increased the mRNA levels of the phase I enzymes CYP1A1, CYP1A2 and, to a lesser extent, CYP1B1, in the liver. The Aryl hydrocarbon receptor (AhR) seemed to be involved in this upregulated CYP1 expression. However, a slight trend toward an increase in the mRNA levels of the phase II enzymes GSTP1 and NQO1 was observed with the HOO diet. At least in the case of GSTP1, this effect was linked to an increased Nrf2 transactivation activity. This different regulation of the XMEs expression led, in the case of the HCO diet, to a balance between the production of active carcinogenic compounds and their inactivation tilted toward phase I, which would stimulate DMBA-induced cancer initiation, whereas the HOO diet was associated with a slower phase I metabolism accompanied by a faster phase II detoxification, thus reducing the output of the active compounds to the target tissues. In the mammary gland, the differential effects of diets may be conditioned by the state of cell differentiation, sexual maturity, and hormone metabolism.