Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34010619

RESUMO

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Assuntos
Arabidopsis/genética , Genes de Plantas , Invenções , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/citologia , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Xilema/genética
3.
New Phytol ; 239(4): 1368-1383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37306070

RESUMO

Inorganic phosphate (Pi) is a necessary macronutrient for basic biological processes. Plants modulate their root system architecture (RSA) and cellular processes to adapt to Pi deprivation albeit with a growth penalty. Excess application of Pi fertilizer, on the contrary, leads to eutrophication and has a negative environmental impact. We compared RSA, root hair elongation, acid phosphatase activity, metal ion accumulation, and brassinosteroid hormone levels of Solanum lycopersicum (tomato) and Solanum pennellii, which is a wild relative of tomato, under Pi sufficiency and deficiency conditions to understand the molecular mechanism of Pi deprivation response in tomato. We showed that S. pennellii is partially insensitive to phosphate deprivation. Furthermore, it mounts a constitutive response under phosphate sufficiency. We demonstrate that activated brassinosteroid signaling through a tomato BZR1 ortholog gives rise to the same constitutive phosphate deficiency response, which is dependent on zinc overaccumulation. Collectively, these results reveal an additional strategy by which plants can adapt to phosphate starvation.


Assuntos
Fosfatos , Solanum lycopersicum , Fosfatos/metabolismo , Brassinosteroides/farmacologia , Zinco , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
4.
Plant J ; 99(6): 1203-1219, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111599

RESUMO

Root development and its response to environmental changes is crucial for whole plant adaptation. These responses include changes in transcript levels. Here, we show that the alternative polyadenylation (APA) of mRNA is important for root development and responses. Mutations in FIP1, a component of polyadenylation machinery, affects plant development, cell division and elongation, and response to different abiotic stresses. Salt treatment increases the amount of poly(A) site usage within the coding region and 5' untranslated regions (5'-UTRs), and the lack of FIP1 activity reduces the poly(A) site usage within these non-canonical sites. Gene ontology analyses of transcripts displaying APA in response to salt show an enrichment in ABA signaling, and in the response to stresses such as salt or cadmium (Cd), among others. Root growth assays show that fip1-2 is more tolerant to salt but is hypersensitive to ABA or Cd. Our data indicate that FIP1-mediated alternative polyadenylation is important for plant development and stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Poliadenilação/genética , Estresse Salino/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 5' não Traduzidas , Ácido Abscísico/metabolismo , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cádmio/toxicidade , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poliadenilação/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
5.
Plant Cell ; 28(6): 1372-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26628743

RESUMO

Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Flavonóis/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Luz , Fototropismo/genética , Fototropismo/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
6.
New Phytol ; 213(1): 105-112, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27891649

RESUMO

Root branching in plants relies on the de novo formation of lateral roots. These are initiated from founder cells, triggering new formative divisions that generate lateral root primordia (LRP). The LRP size and shape depends on the balance between positive and negative signals that control cell proliferation. The mechanisms controlling proliferation potential of LRP cells remains poorly understood. We found that Arabidopsis thaliana MYB36, which have been previously shown to regulate genes required for Casparian strip formation and the transition from proliferation to differentiation in the primary root, plays a new role in controlling LRP development at later stages. We found that MYB36 is a novel component of LR development at later stages. MYB36 was expressed in the cells surrounding LRP where it controls a set of peroxidase genes, which maintain reactive oxygen species (ROS) balance. This was required to define the transition between proliferating and arrested cells inside the LRP, coinciding with the change from flat to dome-shaped primordia. Reducing the levels of hydrogen peroxide (H2 O2 ) in myb36-5 significantly rescues the mutant phenotype. Our results uncover a role for MYB36 outside the endodermis during LRP development through a mechanism analogous to regulating the proliferation/differentiation transition in the root meristem.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética
7.
J Exp Bot ; 68(18): 5103-5116, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29106622

RESUMO

Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Basidiomycota/fisiologia , Manosiltransferases/metabolismo , Peroxidases/metabolismo , beta-Glucosidase/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Divisão Celular , Glicosilação , Concentração de Íons de Hidrogênio , Íntrons/genética , Manosiltransferases/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos da radiação , Mutação , Peroxidases/genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Proteômica , Splicing de RNA , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , beta-Glucosidase/genética
8.
Plant J ; 84(1): 244-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26312572

RESUMO

In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.


Assuntos
Escuridão , Luz , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação
9.
Plant Physiol ; 165(3): 1105-1119, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24879433

RESUMO

Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.

10.
J Exp Bot ; 65(10): 2617-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24215077

RESUMO

Plants are sessile organisms that have to adapt their growth to the surrounding environment. Concomitant with this adaptation capability, they have adopted a post-embryonic development characterized by continuous growth and differentiation abilities. Constant growth is based on the potential of stem cells to divide almost incessantly and on a precise balance between cell division and cell differentiation. This balance is influenced by environmental conditions and by the genetic information of the cell. Among the internal cues, the cross-talk between different hormonal signalling pathways is essential to control this division/differentiation equilibrium. Auxin, one of the most important plant hormones, regulates cell division and differentiation, among many other processes. Amazing advances in auxin signal transduction at the molecular level have been reported, but how this signalling is connected to the cell cycle is, so far, not well known. Auxin signalling involves the auxin-dependent degradation of transcription repressors by F-box-containing E3 ligases of ubiquitin. Recently, SKP2A, another F-box protein, was shown to bind auxin and to target cell-cycle repressors for proteolysis, representing a novel mechanism that links auxin to cell division. In this review, a general vision of what is already known and the most recent advances on how auxin signalling connects to cell division and the role of the ubiquitin pathway in plant cell cycle will be covered.


Assuntos
Ciclo Celular , Ácidos Indolacéticos/metabolismo , Ubiquitina/metabolismo , Plantas/enzimologia , Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais
11.
Nat Plants ; 10(1): 118-130, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38168610

RESUMO

Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Resistência à Seca , Raízes de Plantas/metabolismo , Parede Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Água/metabolismo
12.
Plant Physiol ; 160(2): 749-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837358

RESUMO

In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5' end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Epigênese Genética , Proteínas F-Box/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases Associadas a Fase S/metabolismo , Acetilação , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular , Imunoprecipitação da Cromatina , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Ácidos Indolacéticos/farmacologia , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Regiões Promotoras Genéticas , Proteínas Quinases Associadas a Fase S/genética , Transdução de Sinais , Transcrição Gênica
13.
Plant Cell ; 22(12): 3891-904, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21139066

RESUMO

Arabidopsis thaliana S-Phase Kinase-Associated Protein 2A (SKP2A) is an F-box protein that regulates the proteolysis of cell cycle transcription factors. The plant hormone auxin regulates multiple aspects of plant growth and development, including cell division. We found that auxin induces the ubiquitin-dependent degradation of SKP2A both in vivo and in vitro, suggesting that this hormone acts as a signal to trigger SKP2A proteolysis. In this article, we show that auxin binds directly and specifically to SKP2A. By TIR1-based superposition and docking analyzes, we identified an auxin binding site in SKP2A. Mutations in this binding site reduce the ability of SKP2A to bind to auxin and generate nondegradable SKP2A forms. In addition, these non-auxin binding proteins are unable to promote E2FC/DPB degradation in vivo or to induce cell division in the root meristem. Auxin binds to TIR1 to promote its interaction with the auxin/indole-3-acetic acid target proteins. Here, we show that auxin also enhanced the interaction between SKP2A and DPB. Finally, a mutation in SKP2A leads to auxin-resistant root growth, an effect that is additive with the tir1-1 phenotype. Thus, our data indicate that SKP2A is an auxin binding protein that connects auxin signaling with cell division.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo
14.
Plant J ; 53(5): 828-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18036202

RESUMO

Coordination between cell division and cell differentiation is crucial for growth and development of eukaryotic organisms. Progression through the different phases of cell division requires the specific degradation of proteins through the ubiquitin/proteasome 26S (Ub/26S) pathway. In plants, this pathway plays a key role in controlling several developmental processes and responses, including cell proliferation. SKP2A, an F-box protein, regulates the stability of the cell division E2FC-DPB transcription factor. Here, we show that the SKP2A forms a Skp, Cullin containing (SCF) complexin vivo that has E3 ubiquitin ligase activity. Interestingly, SKP2A is degraded through the Ub/26S pathway, and auxin regulates such degradation. SKP2A positively regulates cell division, at least in part by degrading the E2FC/DPB transcription repressor. Plants that overexpress SKP2A increase the number of cells in G2/M, reduce the level of ploidy and develop a higher number of lateral root primordia. Taken together, our results indicate that SKP2A is a positive regulator of cell division, and its stability is controlled by auxin-dependent degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Divisão Celular , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/metabolismo , Plantas Geneticamente Modificadas , Proteínas Ligases SKP Culina F-Box/metabolismo
15.
FEBS Lett ; 593(2): 209-218, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447065

RESUMO

Spermidine is a polyamine present in eukaryotes with essential functions in protein synthesis. At high concentrations spermidine and norspermidine inhibit growth by unknown mechanisms. Transcriptomic analysis of the effect of norspermidine on the plant Arabidopsis thaliana indicates upregulation of the response to heat stress and denatured proteins. Accordingly, these polyamines inhibit protein ubiquitylation, both in vivo (in yeast, Arabidopsis, and human Hela cells) and in vitro (with recombinant ubiquitin ligase). This interferes with protein degradation by the proteasome, a situation known to deplete cells of amino acids. Norspermidine treatment of yeast cells induces amino acid depletion, and supplementation of media with amino acids counteracts growth inhibition and cellular amino acid depletion but not inhibition of protein polyubiquitylation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Espermidina/análogos & derivados , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células HeLa , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Análise de Sequência de RNA , Espermidina/farmacologia , Ubiquitinação
16.
Front Plant Sci ; 5: 219, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904615

RESUMO

Plants have extraordinary developmental plasticity as they continuously form organs during post-embryonic development. In addition they may regenerate organs upon in vitro hormonal induction. Advances in the field of plant regeneration show that the first steps of de novo organogenesis through in vitro culture in hormone containing media (via formation of a proliferating mass of cells or callus) require root post-embryonic developmental programs as well as regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation is delivered during lateral root initiation and callus formation. Implications in reprograming, cell fate and pluripotency acquisition are discussed. Finally, we analyze the function of cell cycle regulators and connections with epigenetic regulation. Future work dissecting plant organogenesis driven by both endogenous and exogenous cues (upon hormonal induction) may reveal new paradigms of common regulation.

17.
Plant Mol Biol ; 68(1-2): 145-58, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18535787

RESUMO

Ubiquitin (Ub) is a small peptide that is covalently attached to proteins in a posttranslational reaction. Ubiquitination is a precise regulatory system that is present in all eukaryotic organisms and regulates the stability, the activity, the localization and the transport of proteins. Ubiquitination involves different enzymatic activities, in which the E3 ligases catalyze the last step recruiting of the target for labelling with ubiquitin. Genomic analyses have shown that the ubiquitin-proteasome system involves a large number of proteins in plants, as approximately 5% of the total protein belongs to this pathway. In contrast to the high number of E3 ligases of ubiquitin identified, very few proteins regulated by ubiquitination have been described. To solve this, we have undertaken a new proteomic approach aimed to identify proteins modified with ubiquitin. This is based on affinity purification and identification for ubiquitinated proteins using the ubiquitin binding domain (UBA) polypeptide of the P62 protein attached to agarose beads. This P62-agarose matrix is capable of specifically binding ubiquitinated proteins. These bound proteins were digested with trypsin and the peptides separated by HPLC chromatography, spotted directly onto a MALDI target and analyzed by MALDI-TOF/TOF off-line coupled LC/MALDI-MS/MS. A total of 200 putative ubiquitinated proteins were identified. From these we found that several of the putative targets were already described in plants, as well as in other organisms, as ubiquitinated proteins. In addition, we have found that some of these proteins were indeed modified with ubiquitin in vivo. Taken together, we have shown that this approach is useful for identifying ubiquitinated protein in plants.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Imunoprecipitação , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitinação
18.
Plant Signal Behav ; 3(10): 810-2, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19704565

RESUMO

The ubiquitin pathway is emerging as a powerful system that controls the stability of key regulatory proteins. In plants, this pathway plays an important role in controlling several developmental processes, responses to environmental changes and also cell division. Arabidopsis SKP2A is an F-box protein that regulates the stability of the E2FC-DPB transcription factor, a repressor of cell proliferation. Although the function of SKP2A is to recruit targets for degradation, we have shown that SKP2A is also degraded through the Ub/26S pathway and, interestingly, auxin stimulates such degradation. Overexpression of SKP2A positively regulates cell division, increasing the number of cells in G(2)/M, reducing the level of ploidy and developing higher number of lateral root primordia. In addition, we showed in this report that overexpression of SKP2A increased the survival of Arabidopsis plants when they grown on a medium with high levels of sucrose, likely by maintaining cell division active. Thus, it is likely that SKP2A connects cell division with stress responses.

19.
Gac. méd. Méx ; 133(1): 3-6, ene.-feb. 1997. tab
Artigo em Espanhol | LILACS | ID: lil-227244

RESUMO

Se realizó un ensayo clínico con 150 pacientes atendidos en una unidad de atención primaria en Chihuahua, Chihuahua a fin de comparar la eficacia de las medidas de higiene del sueño con el efecto de un placebo y con el del tratamiento a base de benzodiacepinas para el insomnio psicofisiológico. Los pacientes se dividieron en tres grupos mediante un sorteo aletorio no sistematizado, por cuotas. Al primer grupo se le dió un instructivo de 10 enunciados con las medidas de higiene del sueño, el segundo grupo recibió placebo y el tercero, benzodiacepinas. Los pacientes fueron entrevistados tres semanas después de la aplicación de la prueba y su efecto se clasificó en éxito o fracaso. El resultado en el grupo I fue de 65 por ciento de éxito contra 35 por ciento de fracaso, en el grupo II de 50 por ciento de éxito y 50 por ciento de fracaso y en el grupo III de 73 por ciento de éxito y 23 por ciento de fracaso (p=0.06). Se concluyó que los tres tipos de tratamiento tienen eficacia similar en el tratamiento del insomnio. Las medidas de higiene del sueño son efectivas y no tienen riesgo de presentar efectos secundarios, por lo que las recomendamos como primera elección en este tipo de trastorno


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ansiolíticos , Higiene , Placebos , Psicofísica , Distúrbios do Início e da Manutenção do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA