Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(7): 3589-3597, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37294891

RESUMO

Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-ß and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.


Assuntos
Vacinas Anticâncer , Comovirus , Melanoma , Animais , Cães , Camundongos , Comovirus/fisiologia , RNA Viral/genética , Modelos Animais de Doenças , Citocinas , Vacinação
2.
Mol Pharm ; 20(1): 500-507, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399598

RESUMO

Cowpea mosaic virus (CPMV) has been developed as a promising nanoplatform technology for cancer immunotherapy; when applied as in situ vaccine, CPMV exhibits potent, systemic, and durable efficacy. While CPMV is not infectious to mammals, it is infectious to legumes; therefore, agronomic safety needs to be addressed to broaden the translational application of CPMV. RNA-containing formulations are preferred over RNA-free virus-like particles because the RNA and protein, each, contribute to CPMV's potent antitumor efficacy. We have previously optimized inactivation methods to develop CPMV that contains RNA but is not infectious to plants. We established that inactivated CPMV has reduced efficacy compared to untreated, native CPMV. However, a systematic comparison between native CPMV and different inactivated forms of CPMV was not done. Therefore, in this study, we directly compared the therapeutic efficacies and mechanisms of immune activation of CPMV, ultraviolet- (UV-), and formalin (Form)-inactivated CPMV to explain the differential efficacies. In a B16F10 melanoma mouse tumor model, Form-CPMV suppressed the tumor growth with prolonged survival (there were no statistical differences comparing CPMV and Form-CPMV). In comparison, UV-CPMV inhibited tumor growth significantly but not as well as Form-CPMV or CPMV. The reduced therapeutic efficacy of UV-CPMV is explained by the degree of cross-linking and aggregated state of the RNA, which renders it inaccessible for sensing by Toll-like receptor (TLR) 7/8 to activate immune responses. The mechanistic studies showed that the highly aggregated state of UV-CPMV inhibited TLR7 signaling more so than for the Form-CPMV formulation, reducing the secretion of interleukin-6 (IL-6) and interferon-α (IFN-α), cytokines associated with TLR7 signaling. These findings support the translational development of Form-CPMV as a noninfectious immunotherapeutic agent.


Assuntos
Comovirus , Melanoma , Animais , Camundongos , Receptor 7 Toll-Like , Modelos Animais de Doenças , Vacinação/métodos , Mamíferos
3.
Mol Pharm ; 19(5): 1573-1585, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35333531

RESUMO

In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon ß (IFNß) compared to TRSV and CPSMV; therefore, IFNß released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.


Assuntos
Vacinas Anticâncer , Comovirus , Neoplasias , Vírus de Plantas , Secoviridae , Animais , Citocinas , Cães , Humanos , Imunoterapia , Mamíferos , Camundongos , Receptor 2 Toll-Like , Microambiente Tumoral
4.
Mol Pharm ; 19(2): 592-601, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34978197

RESUMO

Viral immunotherapies are being recognized in cancer treatment, with several currently approved or undergoing clinical testing. While contemporary approaches have focused on oncolytic viral therapies, our efforts center on the development of plant virus-based cancer immunotherapies. In a previous work, we demonstrated the potent efficacy of the cowpea mosaic virus (CPMV), a plant virus that does not replicate in animals, applied as an in situ vaccine. CPMV is an immunostimulatory drug candidate, and intratumoral administration remodels the tumor microenvironment leading to activation of local and systemic antitumor immunity. Efficacy has been demonstrated in multiple tumor mouse models and canine cancer patients. As wild-type CPMV is infectious toward various legumes and because shedding of infectious virus from patients may be an agricultural concern, we developed UV-inactivated CPMV (termed inCPMV) which is not infectious toward plants. We report that as a monotherapy, wild-type CPMV outperforms inCPMV in mouse models of dermal melanoma or disseminated colon cancer. Efficacy of inCPMV is less than that of CPMV and similar to that of RNA-free CPMV. Immunological investigation using knockout mice shows that inCPMV does not signal through TLR7 (toll-like receptor); structure-function studies indicate that the RNA is highly cross-linked and therefore unable to activate TLR7. Wild-type CPMV signals through TLR2, -4, and -7, whereas inCPMV more closely resembles RNA-free CPMV which signals through TLR2 and -4 only. The structural features of inCPMV explain the increased potency of wild-type CPMV through the triple pronged TLR activation. Strikingly, when inCPMV is used in combination with an anti-OX40 agonist antibody (administered systemically), exceptional efficacy was demonstrated in a bilateral B16F10 dermal melanoma model. Combination therapy, with in situ vaccination applied only into the primary tumor, controlled the progression of the secondary, untreated tumors, with 10 out of 14 animals surviving for at least 100 days post tumor challenge without development of recurrence or metastatic disease. This study highlights the potential of inCPMV as an in situ vaccine candidate and demonstrates the power of combined immunotherapy approaches. Strategic immunocombination therapies are the formula for success, and the combination of in situ vaccination strategies along with therapeutic antibodies targeting the cancer immunity cycle is a particularly powerful approach.


Assuntos
Vacinas Anticâncer , Comovirus , Melanoma , Animais , Modelos Animais de Doenças , Cães , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Camundongos , Microambiente Tumoral
5.
Int J Hyperthermia ; 37(3): 18-33, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426995

RESUMO

Immunotherapy to treat cancer is now an established clinical approach. Immunotherapy can be applied systemically, as done with checkpoint blockade antibodies, but it can also be injected directly into identified tumors, in a strategy of in situ vaccination (ISV). ISV is designed to stimulate a strong local antitumor immune response involving both innate and adaptive immune cells, and through this generate a systemic antitumor immune response against metastatic tumors. A variety of ISVs have been utilized to generate an immunostimulatory tumor microenvironment (TME). These include attenuated microorganisms, recombinant proteins, small molecules, physical disruptors of TME (alternating magnetic and focused ultrasound heating, photothermal therapy, and radiotherapy), and more recently nanoparticles (NPs). NPs are attractive and unique since they can load multiple drugs or other reagents to influence immune and cancer cell functions in the TME, affording a unique opportunity to stimulate antitumor immunity. Here, we describe the NP-ISV therapeutic mechanisms, review chemically synthesized NPs (i.e., liposomes, polymeric, chitosan-based, inorganic NPs, etc.), biologically derived NPs (virus and bacteria-based NPs), and energy-activated NP-ISVs in the context of their use as local ISV. Data suggests that NP-ISVs can enhance outcomes of immunotherapeutic regimens including those utilizing tumor hyperthermia and checkpoint blockade therapies.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/terapia , Microambiente Tumoral , Vacinação
6.
Int J Hyperthermia ; 37(3): 4-17, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33455477

RESUMO

FDA approval of anti-CTLA4 in 2011 for melanoma immunotherapy was paradigm shifting and dramatically accelerated cancer immunotherapy research. The investment and effort have been exceptionally large, with a commensurate impressive pace of discovery. Historical and current research has validated the following key points: tumors are recognized by the immune system; tumors develop an immunosuppressive environment which suppresses the antitumor immune response; successful immunotherapy must overcome that tumor-mediated immunosuppression. While cancer immunotherapy research expanded, a parallel effort developing nanoparticles (NP) for cancer diagnosis and therapy also received major investment and expanded. Initially the two efforts appeared to have minimal synergy. Systemically administered nanoparticles are rapidly ingested by phagocytic leukocytes, and therefore nanotechnologists developed strategies to avoid NP ingestion by leukocytes in order to accomplish nanoparticle accumulation in tumors rather than liver and spleen. Recently, nanotechnology and cancer immunotherapy have increasingly merged since phagocytic leukocytes are the key to reversing the local tumor immunosuppression and the tendency of NP to be phagocytosed can be exploited to manipulate phagocytes for immunotherapy. This review focuses on in situ vaccination (ISV), an immunotherapy approach that can utilize direct injection of immunostimulatory reagents, including NPs, into tumors to disrupt the local immunosuppression, stimulate effective immune response against the treated tumor, and most importantly, generate a systemic antitumor immune response to eliminate metastatic tumors. While there are many specific options for using NP for ISV (reviewed further in this special issue), this review focuses on immunology concepts needed to understand and design successful NP ISV approaches.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Humanos , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/terapia , Vacinação
7.
Artigo em Inglês | MEDLINE | ID: mdl-38243929

RESUMO

BACKGROUND: Chronic constipation and irritable bowel syndrome (IBS) manifest as prevalent gastrointestinal disorders, while digestive tract cancers (DTCs) present formidable challenges to global well-being. However, extant observational studies proffer uncertain insights into potential causal relationships of constipation and IBS with susceptibility to DTCs. METHODS: We executed Mendelian randomization (MR) analysis to establish causal connections between these conditions and seven distinct categories of DTCs, including colorectal carcinoma (CRC), hepatocellular cancer (HCC), esophageal malignancy (ESCA), pancreatic adenocarcinoma (PAAD), biliary tract carcinoma (BTCs), gastric carcinoma (GC), and small intestine neoplasm (SIC). Leveraging instrumental variables (IVs) obtained from GWAS data of the FinnGen database, we employed a range of analytical methodologies, including inverse-variance weighting multiplicative random effects (IVW_MRE), inverse-variance weighting fixed effects (IVW_FE), maximum likelihood (ML), weighted median (WM), MR‒Egger regression, and the MR-PRESSO test. RESULTS: We observed a substantial linkage between genetically predicted constipation and increased vulnerability to PAAD (OR = 2.29, 95% CI: 1.422-3.69, P = 0.001) via the IVW method. Following the removal of outlier SNPs through MR-PRESSO, genetically predicted IBS was affiliated with an increased risk of CRC (OR = 1.17, 95% CI: 1-1.37, P = 0.05). Nonetheless, decisive causal correlations of constipation or IBS with other DTCs remain elusive. CONCLUSION: In summary, genetically predicted constipation was associated with an augmented PAAD risk, and IBS was associated with an increased CRC susceptibility within European cohorts, in agreement with some observational studies. Nevertheless, the causal associations of constipation and IBS with other DTCs remain inconclusive.

8.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36460333

RESUMO

BACKGROUND: In situ vaccination (ISV) is a cancer immunotherapy strategy in which immunostimulatory reagents are introduced directly into a tumor to stimulate antitumor immunity both against the treated tumor and systemically against untreated tumors. Recently, we showed that cowpea mosaic virus (CPMV) is a potent multi-toll-like receptor (TLR) agonist with potent efficacy for treating tumors in mice and dogs by ISV. However, ISV with CPMV alone does not uniformly treat all mouse tumor models tested, however this can be overcome through strategic combinations. More insight is needed to delineate potency and mechanism of systemic antitumor immunity and abscopal effect. METHOD: We investigated the systemic efficacy (abscopal effect) of CPMV ISV with a two-tumor mouse model using murine tumor lines B16F10, 4T1, CT26 and MC38. Flow cytometry identified changes in cell populations responsible for systemic efficacy of CPMV. Transgenic knockout mice and depleting antibodies validated the role of relevant candidate cell populations and cytokines. We evaluated these findings and engineered a multicomponent combination therapy to specifically target the candidate cell population and investigated its systemic efficacy, acquired resistance and immunological memory in mouse models. RESULTS: ISV with CPMV induces systemic antitumor T-cell-mediated immunity that inhibits growth of untreated tumors and requires conventional type-1 dendritic cells (cDC1s). Furthermore, using multiple tumor mouse models resistant to anti-programmed death 1 (PD-1) therapy, we tested the hypothesis that CPMV along with local activation of antigen-presenting cells with agonistic anti-CD40 can synergize and strengthen antitumor efficacy. Indeed, this combination ISV strategy induces an influx of CD8+ T cells, triggers regression in both treated local and untreated distant tumors and potentiates tumor responses to anti-PD-1 therapy. Moreover, serial ISV overcomes resistance to anti-PD-1 therapy and establishes tumor-specific immunological memory. CONCLUSIONS: These findings provide new insights into in situ TLR activation and cDC1 recruitment as effective strategies to overcome resistance to immunotherapy in treated and untreated tumors.


Assuntos
Comovirus , Inibidores de Checkpoint Imunológico , Camundongos , Animais , Cães , Linfócitos T CD8-Positivos , Imunoterapia , Vacinação , Adjuvantes Imunológicos , Células Dendríticas , Modelos Animais de Doenças
9.
Biomaterials ; 275: 120914, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34126409

RESUMO

Cowpea mosaic virus (CPMV), a non-enveloped plant virus, and empty CPMV (eCPMV), a virus-like particle (VLP) composed of CPMV capsid without nucleic acids, are potent in situ cancer vaccines when administered intratumorally (I.T.). However, it is unclear how immune cells recognize these nanoparticles and why they are immunogenic, which was investigated in this study. CPMV generated stronger selective induction of cytokines and chemokines in naïve mouse splenocytes and exhibited more potent anti-tumor efficacy than eCPMV. MyD88 is required for both CPMV- and eCPMV-elicited immune responses. Screening with human embryonic kidney (HEK)-293 cell toll-like receptor (TLR) reporter assays along with experiments in corresponding TLR-/- mice indicated CPMV and eCPMV capsids are recognized by MyD88-dependent TLR2 and TLR4. CPMV, but not eCPMV, is additionally recognized by TLR7. Secretion of type I interferons (IFNs), which requires the interaction between TLR7 and encapsulated single-stranded RNAs (ssRNAs), is critical to CPMV's better efficacy. The same recognition mechanisms are also functional in human peripheral blood mononuclear cells (PBMCs). Overall, these findings link CPMV immunotherapy efficacy with molecular recognition, provide rationale for how to develop more potent viral particles, accentuate the value of multi-TLR agonists as in situ cancer vaccines, and highlight the functional importance of type I IFNs for in situ vaccination.


Assuntos
Comovirus , Animais , Células HEK293 , Humanos , Leucócitos Mononucleares , Camundongos , Fator 88 de Diferenciação Mieloide , Receptores Toll-Like
10.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562450

RESUMO

Ovarian cancer is the deadliest gynecological malignancy. Though most patients enter remission following initial interventions, relapse is common and often fatal. Accordingly, there is a substantial need for ovarian cancer therapies that prevent relapse. Following remission generated by surgical debulking and chemotherapy, but prior to relapse, resected and inactivated tumor tissue could be used as a personalized vaccine antigen source. The patient's own tumor contains relevant antigens and, when combined with the appropriate adjuvant, could generate systemic antitumor immunity to prevent relapse. Here, we model this process in mice to investigate the optimal tumor preparation and vaccine adjuvant. Cowpea mosaic virus (CPMV) has shown remarkable efficacy as an immunostimulatory cancer therapy in ovarian cancer mouse models, so we use CPMV as an adjuvant in a prophylactic vaccine against a murine ovarian cancer model. Compared to its codelivery with tumor antigens prepared in three other ways, we show that CPMV co-delivered with irradiated ovarian cancer cells constitutes an effective prophylactic vaccine against a syngeneic model of ovarian cancer in C57BL/6J mice. Following two vaccinations, 72% of vaccinated mice reject tumor challenges, and all those mice survived subsequent rechallenges, demonstrating immunologic memory formation. This study supports remission-stage vaccines using irradiated patient tumor tissue as a promising option for treating ovarian cancer, and validates CPMV as an antitumor vaccine adjuvant for that purpose.

11.
Nat Commun ; 11(1): 249, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937776

RESUMO

The inability of conventional electronic architectures to efficiently solve large combinatorial problems motivates the development of novel computational hardware. There has been much effort toward developing application-specific hardware across many different fields of engineering, such as integrated circuits, memristors, and photonics. However, unleashing the potential of such architectures requires the development of algorithms which optimally exploit their fundamental properties. Here, we present the Photonic Recurrent Ising Sampler (PRIS), a heuristic method tailored for parallel architectures allowing fast and efficient sampling from distributions of arbitrary Ising problems. Since the PRIS relies on vector-to-fixed matrix multiplications, we suggest the implementation of the PRIS in photonic parallel networks, which realize these operations at an unprecedented speed. The PRIS provides sample solutions to the ground state of Ising models, by converging in probability to their associated Gibbs distribution. The PRIS also relies on intrinsic dynamic noise and eigenvalue dropout to find ground states more efficiently. Our work suggests speedups in heuristic methods via photonic implementations of the PRIS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA