Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Physiol ; 190(2): 1307-1320, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35809075

RESUMO

Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiência de Magnésio , Aclimatação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcineurina/genética , Proteínas de Transporte/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Magnésio/metabolismo , Deficiência de Magnésio/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
2.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067654

RESUMO

As a gaseous biological signaling molecule, nitric oxide (NO) regulates many physiological processes in plants. Over the last decades, this low molecular weight compound has been identified as a key signaling molecule to regulate plant stress responses, and also plays an important role in plant development. However, elucidation of the molecular mechanisms for NO in leaf development has so far been limited due to a lack of mutant resources. Here, we employed the NO-deficient mutant nia1nia2 to examine the role of NO in leaf development. We have found that nia1nia2 mutant plants displayed very different leaf phenotypes as compared to wild type Col-0. Further studies have shown that reactive oxygen species (ROS) levels are higher in nia1nia2 mutant plants. Interestingly, ROS-related enzymes ascorbate peroxidase (APX), catalases (CAT), and peroxidases (POD) have shown decreases in their activities. Our transcriptome data have revealed that the ROS synthesis gene RBOHD was enhanced in nia1nia2 mutants and the photosynthesis-related pathway was impaired, which suggests that NO is required for chloroplast development and leaf development. Together, these results imply that NO plays a significant role in plant leaf development by regulating ROS homeostasis.


Assuntos
Arabidopsis/metabolismo , Homeostase , Óxido Nítrico/metabolismo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento
3.
Planet Space Sci ; 153: 127-133, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29773922

RESUMO

The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G. The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year-1 AU-1, which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system -- Earth's Moon, Mars and Venus -- and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.

4.
Front Neurol ; 13: 1013062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388174

RESUMO

Objective: Nuclear factor erythroid 2-related factor 2 (Nrf2) may harbor endogenous neuroprotective role. We strived to ascertain the prognostic significance of serum Nrf2 in severe traumatic brain injury (sTBI). Methods: This prospective cohort study included 105 controls and 105 sTBI patients, whose serum Nrf2 levels were quantified. Its relations to traumatic severity and 180-day overall survival, mortality, and poor prognosis (extended Glasgow Outcome Scale score 1-4) were discerned using multivariate analysis. Results: There was a substantial enhancement of serum Nrf1 levels of patients (median, 10.9 vs. 3.3 ng/ml; P < 0.001), as compared to controls. Serum Nrf2 levels were independently correlative to Rotterdam computed tomography (CT) scores (ρ = 0.549, P < 0.001; t = 2.671, P = 0.009) and Glasgow Coma Scale (GCS) scores (ρ = -0.625, P < 0.001; t = -3.821, P < 0.001). Serum Nrf2 levels were significantly higher in non-survivors than in survivors (median, 12.9 vs. 10.3 ng/ml; P < 0.001) and in poor prognosis patients than in good prognosis patients (median, 12.5 vs. 9.4 ng/ml; P < 0.001). Patients with serum Nrf2 levels > median value (10.9 ng/ml) had markedly shorter 180-day overall survival time than the other remainders (mean, 129.3 vs. 161.3 days; P = 0.002). Serum Nrf2 levels were independently predictive of 180-day mortality (odds ratio, 1.361; P = 0.024), overall survival (hazard ratio, 1.214; P = 0.013), and poor prognosis (odds ratio, 1.329; P = 0.023). Serum Nrf2 levels distinguished the risks of 180-day mortality and poor prognosis with areas under receiver operating characteristic curve (AUCs) at 0.768 and 0.793, respectively. Serum Nrf2 levels > 10.3 ng/ml and 10.8 ng/ml discriminated patients at risk of 180-day mortality and poor prognosis with the maximum Youden indices of 0.404 and 0.455, respectively. Serum Nrf2 levels combined with GCS scores and Rotterdam CT scores for death prediction (AUC, 0.897; 95% CI, 0.837-0.957) had significantly higher AUC than GCS scores (P = 0.028), Rotterdam CT scores (P = 0.007), or serum Nrf2 levels (P = 0.006) alone, and the combination for poor outcome prediction (AUC, 0.889; 95% CI, 0.831-0.948) displayed significantly higher AUC than GCS scores (P = 0.035), Rotterdam CT scores (P = 0.006), or serum Nrf2 levels (P = 0.008) alone. Conclusion: Increased serum Nrf2 levels are tightly associated with traumatic severity and prognosis, supporting the considerable prognostic role of serum Nrf2 in sTBI.

5.
J Integr Plant Biol ; 50(12): 1530-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19093971

RESUMO

Magnesium (Mg(2+)) is one of the essential cations in all cells. Although the Mg(2+) transport mechanism has been well-documented in bacteria, less is known about Mg(2+) transporters in eukaryotes. The AtMGT gene family encoding putative magnesium transport proteins had been described previously. We report here that one of the Arabidopsis MGT family members, the AtMGT7 gene, encodes two mRNAs that have resulted from alternative splicing variants, designated AtMGT7a and AtMGT7b. Interestingly, the two mRNA variants were expressed with different patterns with AtMGT7a expressing in all organs, but AtMGT7b appearing only in root and flowers. The AtMGT7a variant functionally complemented a bacterial mutant lacking Mg(2+) transport capacity, whereas AtMGT7b did not. The (63)Ni(2+) tracer uptake analysis in the bacterial model showed that AtMGT7a mediated low-affinity transport of Mg(2+). Consistent with the complementation assay result, (63)Ni(2+) tracer uptake analysis revealed that AtMGT7b did not transport Mg(2+). This study therefore has identified from a higher plant the first low-affinity Mg(2+) transporter encoded by a gene with alternatively spliced transcripts that produce proteins with distinct functions.


Assuntos
Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Magnésio/metabolismo , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica , Teste de Complementação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salmonella/genética , Análise de Sequência de DNA , Zinco/metabolismo
6.
Front Plant Sci ; 9: 274, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593754

RESUMO

Magnesium (Mg) is one of the essential nutrients for all living organisms. Plants acquire Mg from the environment and distribute within their bodies in the ionic form via Mg2+-permeable transporters. In Arabidopsis, the plasma membrane-localized magnesium transporter MGT6 mediates Mg2+ uptake under Mg-limited conditions, and therefore is important for the plant adaptation to low-Mg environment. In this study, we further assessed the physiological function of MGT6 using a knockout T-DNA insertional mutant allele. We found that MGT6 was required for normal plant growth during various developmental stages when the environmental Mg2+ was low. Interestingly, in addition to the hypersensitivity to Mg2+ limitation, mgt6 mutants displayed dramatic growth defects when external Mg2+ was in excess. Compared with wild-type plants, mgt6 mutants generally contained less Mg2+ under both low and high external Mg2+ conditions. Reciprocal grafting experiments further underpinned a role of MGT6 in a shoot-based mechanism for detoxifying excessive Mg2+ in the environment. Moreover, we found that mgt6 mgt7 double mutant showed more severe phenotypes compared with single mutants under both low- and high-Mg2+ stress conditions, suggesting that these two MGT-type transporters play an additive role in controlling plant Mg2+ homeostasis under a wide range of external Mg2+ concentrations.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29670662

RESUMO

OBJECTIVE: To investigate the effects of QKF on expression of amyloid-beta (Aß), interleukin-1 beta (IL-1ß), and glial fibrillary acidic protein (GFAP) using a rat model of AD. MATERIALS AND METHODS: Fifty-six male Sprague-Dawley rats were randomly divided into seven groups (eight rats each): control group, sham-operated group, AD model group, groups of AD rats administered with low, medium, and high doses of QKF, and the donepezil group. AD was established by bilateral injection of ß-amyloid (Aß) 1-40 into the hippocampus. Two days after AD was established, drugs were administered by gavage. After 14 days of treatment, we used RT-PCR, Western blotting, and immunohistochemistry to measure the transcript expression and protein abundance of Aß, IL-1ß, and GFAP, and methenamine silver staining was used to detect amyloid protein particle deposition. RESULTS: Compared to the control group, the rats from the AD model group showed significantly greater expression levels of Aß, IL-1ß, and GFAP. However, these differences in expression were abolished by treatment with QKF or donepezil. CONCLUSION: QKF possesses therapeutic potential against AD because it downregulated Aß, IL-1ß, and GFAP in the hippocampus of AD rats. Future studies should further examine the mechanisms through which QKF produces its effects and the consequences of long-term QKF administration.

8.
Mol Med Rep ; 16(4): 4165-4170, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765902

RESUMO

Neuroglioma is the most common primary malignant tumor in neurosurgery. Due to its short survival period and high patient mortality rate, neuroglioma is a major challenge in clinics. Elucidating the pathogenic mechanisms and associated molecular targets of neuroglioma can therefore benefit diagnosis and treatment of glioma. Previous studies have established the role of microRNA (miR)­26b in various tumors, including breast cancer, lymphoma and glioma. Its function and mechanism in neuroglioma, however, remains to be elucidated. In the present study, in vitro cultured U87 glioma cells were randomly divided into miR­26b mimic, miR­26b inhibitor and respective control (NC) groups. MTT assay was performed to detect the effect of miR­26b on cell proliferation, while a cell invasion assay detected its effects on cell invasion. Caspase­3 activity was also quantified to test cell apoptosis, followed by reverse transcription-quantitative polymerase chain reaction and western blotting to detect the variation of Bcl­2 expression under the effect of miR­26b. miR­26b mimics transfection upregulated its expression in U87 cells, which had significantly reduced Bcl­2 mRNA and protein expression levels and higher casapse3 activity, and inhibited cell proliferation and invasion compared with the control group. The transfection of miR­26b inhibitor, in contrast, facilitated U87 cell proliferation and invasion, inhibited caspase­3 activity and elevated Bcl­2 mRNA/protein expression. In conclusion, miR­26 could facilitate apoptosis and inhibit proliferation/invasion of neuroglioma cells via downregulating Bcl­2 expression and potentiating caspase-3 activity.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , MicroRNAs/metabolismo , Neoplasias Encefálicas/enzimologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
11.
Cell Res ; 19(7): 887-98, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19436262

RESUMO

Magnesium (Mg(2+)) is abundant in plant cells and plays a critical role in many physiological processes. A 10-member gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg(2+) transporters. Some family members (AtMGT1 and AtMGT10) function as high-affinity Mg(2+) transporter and could complement bacterial mutant or yeast mutant lacking Mg(2+) transport capability. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg(2+) transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg(2+) uptake in the sub-millimolar range of Mg(2+). The AtMGT9 gene was expressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mutant +/mgt9, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, AtMGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgt9. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg(2+) transporter that plays a crucial role in male gametophyte development and male fertility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Pólen/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Magnésio/farmacologia , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Pólen/metabolismo , Interferência de RNA , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA