Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Anal Chem ; 96(18): 7248-7256, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38655839

RESUMO

Ferroptosis modulation is a powerful therapeutic option for pancreatic ductal adenocarcinoma (PDAC) with a low 5-year survival rate and lack of effective treatment methods. However, due to the dual role of ferroptosis in promoting and inhibiting pancreatic tumorigenesis, regulating the degree of ferroptosis is very important to obtain the best therapeutic effect of PDAC. Biothiols are suitable as biomarkers of imaging ferroptosis due to the dramatic decreases of biothiol levels in ferroptosis caused by the inhibited synthesis pathway of glutathione (GSH) and the depletion of biothiol by reactive oxygen species. Moreover, a very recent study reported that cysteine (Cys) depletion can lead to pancreatic tumor ferroptosis in mice and may be employed as an effective therapeutic strategy for PDAC. Therefore, visualization of biothiols in ferroptosis of PDAC will be helpful for regulating the degree of ferroptosis, understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis, and further promoting the study and treatment of PDAC. Herein, two biothiol-activable near-infrared (NIR) fluorescent/photoacoustic bimodal imaging probes (HYD-BX and HYD-DX) for imaging of pancreatic tumor ferroptosis were reported. These two probes show excellent bimodal response performances for biothiols in solution, cells, and tumors. Subsequently, they have been employed successfully for real-time visualization of changes in concentration levels of biothiols during the ferroptosis process in PDAC cells and HepG2 cells. Most importantly, they have been further applied for bimodal imaging of ferroptosis in pancreatic cancer in mice, with satisfactory results. The development of these two probes provides new tools for monitoring changes in concentration levels of biothiols in ferroptosis and will have a positive impact on understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis and further promoting the study and treatment of PDAC.


Assuntos
Ferroptose , Corantes Fluorescentes , Imagem Óptica , Neoplasias Pancreáticas , Técnicas Fotoacústicas , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Corantes Fluorescentes/química , Animais , Camundongos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Raios Infravermelhos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia
2.
Bioorg Chem ; 149: 107531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850779

RESUMO

Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.


Assuntos
Corantes Fluorescentes , Nitrorredutases , Imagem Óptica , Animais , Humanos , Camundongos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias/diagnóstico por imagem , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Nitrorredutases/metabolismo , Nitrorredutases/análise , Técnicas Fotoacústicas , Dióxido de Nitrogênio/síntese química , Dióxido de Nitrogênio/química
3.
Anal Chem ; 95(33): 12478-12486, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37555783

RESUMO

Cysteine (Cys) is a crucial biological thiol that has a vital function in preserving redox homeostasis in organisms. Studies have shown that Cys is closely related to the development of cancer. Thus, it is necessary to design an efficient method to detect Cys for an effective cancer diagnosis. In this work, a novel tumor-targeting probe (Bio-Cy-S) for dual-modal (NIR fluorescence and photoacoustic) Cys detection is designed. The probe exhibits high selectivity and sensitivity toward Cys. After reaction with Cys, both NIR fluorescence and photoacoustic signals are activated. Bio-Cy-S has been applied for the dual-modal detection of Cys levels in living cells, and it can be used to distinguish normal cells from cancer cells by different Cys levels. In addition, the probe is capable of facilitating dual-modal imaging for monitoring changes in Cys levels in tumor-bearing mice. More importantly, the excellent tumor-targeting ability of the probe greatly improves the signal-to-noise ratio of imaging. To the best of our knowledge, this is the first Cys probe to combine targeting and dual-modal imaging performance for cancer diagnosis.


Assuntos
Cisteína , Corantes Fluorescentes , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Células HeLa , Imagem Óptica/métodos
4.
Anal Chem ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622664

RESUMO

Adenosine triphosphate (ATP), as an indispensable biomolecule, is the main energy source of cells and is used as a marker for diseases such as cancer and fatty liver. It is of great significance to design a near-infrared fluorescent nanoprobe with excellent performance and apply it to various disease models. Here, a near-infrared fluorescent nanoprobe (ZIF-90@SiR) based on a zeolitic imidazole framework is proposed. The fluorescent nanoprobes are synthesized by encapsulating the dye (SiR) into the framework of ZIF-90. Upon the addition of ATP, the structure of the ZIF-90@SiR nanoprobe is disrupted and SiR is released to generate near-infrared fluorescence at 670 nm. In the process of ATP detection, ZIF-90@SiR shows high sensitivity and good selectivity. Moreover, the ZIF-90@SiR nanoprobe has good biocompatibility due to its low toxicity to cells. It is used for fluorescence imaging of ATP in living cells and thus distinguishing normal cells and cancer cells, as well as distinguishing fatty liver cells. Due to excellent near-infrared fluorescence properties, the ZIF-90@SiR nanoprobe can not only distinguish normal mice and tumor mice but also differentiate normal mice and fatty liver mice for the first time.

5.
Anal Chem ; 95(48): 17559-17567, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37994418

RESUMO

Cysteine is an important biological thiol and is closely related to cancer. It remains a challenge to develop a probe that can provide long-term fluorescence detection and imaging of Cys in cells as well as in living organisms. Here, a solid-state fluorophore HTPQ is combined with an acrylate group to construct a solid-state fluorescent probe HTPQC for Cys recognition. The fluorescence of the probe is quenched when the photoinduced electron transfer (PET) process is turned on and the excited-state intramolecular proton transfer (ESIPT) process is turned off. In the presence of Cys, an obvious solid-state fluorescence signal can be observed. The double quenching mechanism makes the probe HTPQC have the advantages of high sensitivity, good selectivity, and high contrast of biological imaging. Due to low cytotoxicity, the probe HTPQC can be used to detect exogenous and endogenous Cys in living cells and is capable of imaging over long periods of time. By making full use of long wavelengths, the probe can be applied for the detection of Cys levels in tumor mice and equipped with the ability to conduct long-term imaging in vivo.


Assuntos
Cisteína , Corantes Fluorescentes , Humanos , Animais , Camundongos , Corantes Fluorescentes/toxicidade , Células HeLa , Compostos de Sulfidrila , Prótons
6.
Anal Chem ; 95(40): 14925-14933, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769239

RESUMO

Bioimaging is widely used in various fields of modern medicine. Fluorescence imaging has the advantages of high sensitivity, high selectivity, noninvasiveness, in situ imaging, and so on. However, one-photon (OP) fluorescence imaging has problems, such as low tissue penetration depth and low spatiotemporal resolution. These disadvantages can be solved by two-photon (TP) fluorescence imaging. However, TP imaging still uses fluorescence intensity as a signal. The complexity of organisms will inevitably affect the change of fluorescence intensity, cause false-positive signals, and affect the accuracy of the results obtained. Fluorescence lifetime imaging (FLIM) is different from other kinds of fluorescence imaging, which is an intrinsic property of the material and independent of the material concentration and fluorescence intensity. FLIM can effectively avoid the fluctuation of TP imaging based on fluorescence intensity and the interference of autofluorescence. Therefore, based on silica-coated gold nanoclusters (AuNCs@SiO2) combined with nucleic acid probes, the dual-mode nanoprobe platform was constructed for TP and FLIM imaging of intracellular endogenous miRNA-21 for the first time. First, the dual-mode nanoprobe used a dual fluorescence quencher of BHQ2 and graphene oxide (GO), which has a high signal-to-noise ratio and anti-interference. Second, the dual-mode nanoprobe can detect miR-21 with high sensitivity and selectivity in vitro, with a detection limit of 0.91 nM. Finally, the dual-mode nanoprobes performed satisfactory TP fluorescence imaging (330.0 µm penetration depth) and FLIM (τave = 50.0 ns) of endogenous miR-21 in living cells and tissues. The dual-mode platforms have promising applications in miRNA-based early detection and therapy and hold much promise for improving clinical efficacy.

7.
Analyst ; 148(22): 5724-5730, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37840316

RESUMO

Although hydrogen sulfide (H2S) is a well-known toxic gas, its vital role as a gas transmitter in various physiological and pathological processes of living systems cannot be ignored. Relevant investigations indicate that endogenous H2S is involved in the development of ulcerative colitis pathology and is overexpressed in ulcerative colitis, and hence can be considered as an ulcerative colitis biomarker. Herein, an isophorone-xanthene-based NIR fluorescent probe (IX-H2S) was constructed to image H2S. Owing to its large conjugated structure, the probe exhibits a near-infrared emission wavelength of 770 nm with a large Stokes shift (186 nm). Moreover, IX-H2S has excellent selectivity for the detection of H2S without interference from other analytes including thiols. In addition, the probe has been successfully applied not only in fluorescence imaging of endogenous and exogenous H2S in living cells, but also in imaging of H2S in normal and ulcerative colitis mice. Encouraged by the eminent performance, IX-H2S is expected to be a potent "assistant" for the diagnosis of ulcerative colitis.


Assuntos
Colite Ulcerativa , Sulfeto de Hidrogênio , Humanos , Camundongos , Animais , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/diagnóstico , Células HeLa , Mitocôndrias , Imagem Óptica
8.
Anal Chem ; 94(14): 5514-5520, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35360906

RESUMO

Hydrogen sulfide (H2S) is an important endogenous gas signal molecule in living system, which participates in a variety of physiological processes. Very recent evidence has accumulated to show that endogenous H2S is closely associated with various cancers and can be regarded as a biomarker of cancer. Herein, we have constructed a new near-infrared fluorescent probe (DCP-H2S) based on isophorone-xanthene dye for sensing hydrogen sulfide (H2S). The probe shows remarkable NIR turn-on signal at 770 nm with a large Stokes shift of 200 nm, together with high sensitivity (15-fold) and rapid detection ability for H2S (4 min). The probe also possesses excellent selectivity for H2S over various other analytes including biothiols containing sulfhydryl (-SH). Moreover, DCP-H2S has been successfully applied to visualize endogenous and exogenous H2S in living cells (293T, Caco-2 and CT-26 cells). In particular, the excellent ability of DCP-H2S to distinguish normal mice and tumor mice is shown, and it is expected to be a powerful tool for detection of H2S in cancer diagnosis.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Células CACO-2 , Células HeLa , Humanos , Camundongos , Imagem Óptica
9.
Anal Chem ; 94(41): 14257-14264, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36210524

RESUMO

Cancer is one of the biggest public enemies of global health with its high morbidity and mortality. Achieving early diagnosis is the most effective means of reducing cancer harm, which requires the use of powerful tools to accurately identify biomarkers. However, most of the reported fluorescent probes for cancer diagnosis can only detect one substance, which makes it difficult to meet the requirements of high accuracy. Here, a fluorescent nanoprobe (CPQ@ZIF-90) for sequential detection of ATP and ONOO- is constructed by encapsulating the ONOO- sensitive unit CPQ within ZIF-90. CPQ@ZIF-90 first reacts with ATP to release CPQ, which greatly enhances the fluorescence at 740 nm. Then, the released CPQ continues to react with ONOO- and is oxidatively cleaved by ONOO- to form a coumarin product with a small π-conjugated structure, which significantly enhances the fluorescence at 510 nm. CPQ@ZIF-90 shows high sensitivity and selectivity for the detection of ATP and then ONOO-. Moreover, CPQ@ZIF-90 has good biocompatibility and successfully realizes the sequential detection of a dual-channel fluorescence change of ATP and ONOO- in living cells and zebrafish and accurately distinguishes normal cells from cancer cells. CPQ@ZIF-90 is expected to be a potential tool for accurate cancer diagnosis through sequential detection of two cancer markers.


Assuntos
Neoplasias , Ácido Peroxinitroso , Trifosfato de Adenosina , Animais , Biomarcadores , Cumarínicos , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Ácido Peroxinitroso/química , Peixe-Zebra
10.
Analyst ; 147(12): 2712-2717, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35635158

RESUMO

As a common gaseous signaling molecule, hydrogen sulfide (H2S) plays a vital role in physiology and pathology. The development of fluorescent probes for detecting H2S has attracted widespread attention. However, most of the reported fluorescent probes with nitrobenzoxadiazole (NBD) as the recognition group have been widely used to simultaneously detect biothiols and H2S, instead of specifically detecting H2S. Herein, a novel NBD-based near-infrared (NIR) fluorescent probe named CX-N for the detection of H2S is synthesized. The selectivity of CX-N for H2S is significantly higher than that for biothiols and other potential interferences. After reacting with H2S, CX-N shows a significant increase in NIR fluorescence (75-fold), large Stokes shift (155 nm) and fast response (4 min). And the possible response mechanism of CX-N to H2S is given and confirmed by HPLC and HRMS. Based on the low cytotoxicity of CX-N, it has been used for H2S imaging in live cells and zebrafish. More importantly, CX-N has also been successfully applied for the real-time imaging of H2S in inflammatory and tumor mice based on its NIR emission, which provides a reliable platform for the specific recognition of H2S in complex biological systems.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Animais , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Sulfeto de Hidrogênio/toxicidade , Camundongos , Neoplasias/diagnóstico por imagem , Imagem Óptica , Peixe-Zebra
11.
Anal Chem ; 93(4): 2510-2518, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470106

RESUMO

Carbon monoxide (CO), as a crucial gasotransmitter, is endogenously produced by the degradation of heme and plays a critical role in regulating various physiological and pathophysiological processes such as oxidative stress. Thus, an effective fluorescent probe for investigating the relationships between CO and oxidative stress in vivo is necessary. In this paper, a ratiometric near-infrared (NIR) fluorescent probe (CP-CO) based on a coumarin-benzopyran fluorophore for imaging CO is developed. CP-CO itself displays strong coumarin emission due to its spironolactone structure. After the probe is reacted with CO and PdCl2, a notable enhancement of emission intensity at 690 nm can be found, which results in an obvious red shift of emission (200 nm). Moreover, CP-CO exhibits high sensitivity toward CO and produces a high enhancement ratio (203-fold). In addition, the probe is applied for ratiometric monitoring of exogenous and endogenous CO levels in HepG2 cells. Furthermore, the fluorescence imaging of CP-CO in zebrafish is performed by two-photon excitation along with excellent penetration ability. Most importantly, CP-CO can visualize the upregulation of CO under lipopolysaccharide (LPS)-induced oxidative stress in a zebrafish model, which vividly reveals its excellent ability in the elucidation of CO function in related biological events.


Assuntos
Monóxido de Carbono/química , Corantes Fluorescentes , Monitorização Fisiológica/métodos , Estresse Oxidativo/fisiologia , Animais , Monóxido de Carbono/metabolismo , Células Hep G2 , Humanos , Raios Infravermelhos , Peixe-Zebra
12.
Anal Chem ; 93(34): 11826-11835, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461732

RESUMO

Cancer ranks as a leading cause of death in every country of the world. However, if they are discovered early, a lot of cancers can be prevented or cured. Discovering and monitoring cancer markers are the main methods for early diagnosis of cancer. To date, many fluorescent probes designed and used for early cancer diagnosis can only react with a single marker, which always causes insufficient accuracy in complex systems. Herein, a novel near-infrared (NIR) fluorescent probe (CyO-DNP) for the sequential detection of H2S and H+ is synthesized. In this probe, a heptamethine dye is selected as the fluorophore and a 2,4-dinitrophenyl (DNP) ether is chosen as recognition group. In the presence of H2S, CyO-DNP is transformed into CyO, which exhibits an intense fluorescence at 663 nm. Then, H+ induces the protonation of CyO to obtain CyOH, and the final fluorescence emission at 793 nm significantly enhances. Owing to the low cytotoxicity and the NIR fluorescence emission, CyO-DNP can sequentially monitor endogenous H2S and H+ in cancer cells and image exogenous and endogenous H2S and H+ in mice. It is worth mentioning that CyO-DNP can effectively avoid the false positive signal caused by the liver and kidney and discriminate normal mice and tumor mice accurately. For all we know, CyO-DNP is the first fluorescent probe for early accurate diagnosis of cancer by sequentially detecting H2S and H+.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Animais , Corantes Fluorescentes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia de Fluorescência , Neoplasias/diagnóstico
13.
Anal Chem ; 93(6): 3301-3307, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33535747

RESUMO

Diabetes is one of the metabolic diseases marked by hyperglycemia and is often accompanied by the occurrence of some complications. As a biomarker of oxidative stress, hydrogen peroxide (H2O2) has close association with the occurrence and development of diabetes and its complications. Unfortunately, there is no fluorescent probe reported for imaging H2O2 in diabetic mice. Here, a novel near-infrared (NIR) fluorescent probe named QX-B was designed and synthesized to detect H2O2. For the probe, the quinolinium-xanthene dye is used as the fluorophore and borate ester is chosen as the response group. After the addition of H2O2, a strong NIR fluorescence signal at 772 nm is observed. The probe not only shows high sensitivity with 10-fold enhancement but also displays excellent selectivity to H2O2 over other possible interfering species. In the meantime, the possible response mechanism of QX-B toward H2O2 was proposed and verified by the high-performance liquid chromatography (HPLC) experiment, mass spectra (MS) experiment, and density functional theory (DFT) calculation. Furthermore, based on the low cell cytotoxicity of QX-B, it has been applied in imaging exogenous and endogenous H2O2 in HeLa cells, HCT116 cells, 4T1 cells, and zebrafish successfully. More importantly, inspired by the performance of NIR fluorescence, QX-B has been used in monitoring H2O2 in diabetic mice for the first time. This provides very important information for the diagnosis and treatment of diabetes and its complications.


Assuntos
Diabetes Mellitus Experimental , Corantes Fluorescentes , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Células HeLa , Humanos , Peróxido de Hidrogênio , Camundongos , Peixe-Zebra
14.
Mikrochim Acta ; 188(9): 287, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34350511

RESUMO

A near-infrared (NIR) fluorescence nanoprobe named RhI-DOX@ZIF-90 has been synthesized by wrapping the guest molecule (RhI and DOX) into ZIF-90 framework. The nanoprobe itself is non-fluorescent and the drug (DOX) is inactive. Upon the addition of ATP, the structure of RhI-DOX@ZIF-90 is degraded. The fluorescence of RhI is recovered and DOX is released. The nanoprobe can detect ATP with high sensitivity and selectivity. There is good linear relationship between the nanoprobe and ATP concentration from 0.25 to 10 mM and the detection limit is 0.10 mM. The nanoprobe has the ability to monitor the change of ATP level in living cells and DOX is released inducing apoptosis of cancer cells. RhI-DOX@ZIF-90 is capable of targeting mitochondria, which provides a basis for improving the efficiency of drug delivery by mitochondrial administration. In particular, the nanoprobe is preferentially accumulated in the tumor sites and detect ATP in tumor mice by fluorescence imaging using near-infrared fluorescence. At the same time, DOX can be released accurately in tumor sites and have good anti-tumor efficiency. So, this nanoprobe is a reliable tool to realize early diagnosis of cancer and improve effect of anticancer drug.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Preparações de Ação Retardada/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos
15.
Mikrochim Acta ; 186(12): 805, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745656

RESUMO

A method is described for determination and optical imaging of hydrogen peroxide (H2O2) by using the two-photon (TP) excited fluorescence of silica (SiO2) nanoparticles containing Fe(II) ions. In the presence of H2O2, hydroxyl radicals (•OH) are produced via the Fenton reaction. This leads to quenching of the green fluorescence of a TP-excitable organic dye loaded into the SiO2NPs. Fluorescence is excited at 370 nm and has an emission peaking at 447 nm. The degree of quenching increases linearly in the 2.5 to 100 µM H2O2 concentration range. The nanoprobe is highly selective and sensitive, with a detection limit of 336 nM. The nanoprobe is biocompatible and was successfully used to image changes in the H2O2 concentration in HeLa cells via TP fluorescence imaging. Graphical abstractSchematic rpresentation of the detection of H2O2 by using the two-photon excited fluorescence of silica nanoparticles (TP-SiO2NPs) containing Fe2+. H2O2 triggers the Fenton reaction to produce hydroxyl radicals (•OH), which quench the green fluorescence of the SiO2NPs.


Assuntos
Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Ferro/química , Nanopartículas/química , Dióxido de Silício/química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ferro/efeitos da radiação , Ferro/toxicidade , Limite de Detecção , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Fótons , Dióxido de Silício/efeitos da radiação , Dióxido de Silício/toxicidade
16.
Anal Chem ; 88(11): 6057-63, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27161421

RESUMO

Ascorbic acid (AA) serves as a key coenzyme in many metabolic pathways, and its abnormal level is found to be associated with several diseases. Therefore, monitoring AA level in living systems is of great biomedical significance. In comparison with one-photon excited fluorescent probes, two-photon (TP) excited probes are more suitable for bioimaging, as they could afford higher imaging resolution with deeper imaging depth. Here, we report for the first time an efficient TP fluorescence probe for turn-on detection and imaging of AA in living cells and tissues. In this nanosystem, the negatively charged two-photon nanoparticles (TPNPs), which were prepared by modifying the silica nanoparticles with a two-photon dye, could adsorb cobalt oxyhydroxide (CoOOH) nanoflakes which carried positive charge by electrostatic force, leading to a remarkable decrease in their fluorescence intensity. However, the introduction of AA could induce the fluorescence recovery of the nanoprobe because it could reduce CoOOH into Co(2+) and result in the destruction of the CoOOH nanoflakes. The nanosystem exhibits a high sensitivity toward AA, with a LOD of 170 nM observed. It also shows high selectivity toward AA over common potential interfering species. The nanoprobe possessed both the advantages of TP imaging and excellent membrane-permeability and good biocompatibility of the silica nanoparticles and was successfully applied in TP-excited imaging of AA in living cells and tissues.


Assuntos
Ácido Ascórbico/análise , Cobalto/química , Corantes Fluorescentes/química , Fígado/química , Nanopartículas/química , Óxidos/química , Fótons , Animais , Sobrevivência Celular , Fluorescência , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Óxidos/síntese química , Tamanho da Partícula , Ratos , Propriedades de Superfície
17.
Anal Chem ; 86(20): 10389-96, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25242376

RESUMO

Pyrene excimer possesses a large Stokes shift and long fluorescence lifetime and has been widely applied in developing time-resolved biosensing systems to solve the autofluorescence interference problems in biological samples. However, only a few of pyrene excimer-based small molecular probes have been reported so far. Ratiometric probes, on the other hand, can eliminate interferences from environmental factors such as instrumental efficiency and environmental conditions by a built-in correction of the dual emission bands but are ineffective for endogenous autofluorescence in biosystems. In this work, by combining the advantages of time-resolved fluorescence technique with ratiometric probe, we reported a bispyrene-fluorescein hybrid FRET cassette (PF) as a novel ratiometric time-resolved sensing platform for bioanalytical applications, with pH chosen as a biorelated target. The probe PF showed a fast, highly selective, and reversible ratiometric fluorescence response to pH in a wide range from 3.0 to 10.0 in buffered solution. By employing time-resolved fluorescence technique, the pH-induced fluorescence signal of probe PF can be well-discriminated from biological autofluorescence background, which enables us to detect pH in a range of 4.0-8.0 in cell media within a few seconds. It has also been preliminarily applied for ratiometric quantitative monitoring of pH changes in living cells with satisfying results. Since many fluorescein-based fluorescence probes have been developed, our strategy might find wide applications in design ratiometric time-resolved probes for detection of various biorelated targets.


Assuntos
Bioensaio/métodos , Fluoresceína/química , Transferência Ressonante de Energia de Fluorescência , Pirenos/química , Bioensaio/instrumentação , Corantes Fluorescentes/química , Células HeLa , Humanos , Estrutura Molecular
18.
Chem Commun (Camb) ; 60(52): 6675-6678, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860824

RESUMO

A near-infrared fluorescent probe (TX-P) for detecting peroxynitrite is constructed. The probe has a near-infrared emission (725 nm), large Stokes shift (125 nm) and excellent sensitivity and selectivity. In addition, TX-P can be used to visualize ONOO- in living cells, image ONOO- in paw edema mice and evaluate anti-inflammatory drugs.


Assuntos
Edema , Corantes Fluorescentes , Ácido Peroxinitroso , Animais , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Camundongos , Edema/diagnóstico por imagem , Edema/tratamento farmacológico , Edema/induzido quimicamente , Raios Infravermelhos , Humanos , Imagem Óptica , Células RAW 264.7 , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/uso terapêutico
19.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969429

RESUMO

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Assuntos
Biotina , Glutationa , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa/química , Glutationa/metabolismo , Animais , Humanos , Camundongos , Biotina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Feminino , Terapia Fototérmica , Camundongos Nus , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico
20.
Talanta ; 277: 126436, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901192

RESUMO

Cancer cells have a high abundance of hypochlorite compared to normal cells, which can be used as the biomarker for imaging cancer cells and tumor. Developing the tumor-targeting fluorescent probe suitable for imaging hypochlorite in vivo is urgently demanded. In this article, based on xanthene dye with a two-photon excited far-red to NIR emission, a tumor-targeting two-photon fluorescent probe (Biotin-HClO) for imaging basal hypochlorite in cancer cells and tumor was developed. For ClO-, Biotin-HClO (20.0 µM) has a linear response range from 15.0 × 10-8 to 1.1 × 10-5 M with a high selectivity and a high sensitivity, a good detection limit of 50 nM and a 550-fold fluorescence enhancement with high signal-to-noise ratio (20 mM PBS buffer solution with 50 % DMF; pH = 7.4; λex = 605 nm; λem = 635 nm). Morover, Biotin-HClO exhibited excellent performance in monitoring exogenous and endogenous ClO- in cells, and has an outstanding tumor-targeting ability. Subsequently, Biotin-HClO has been applied for imaging ClO- in 4T1 tumor tissue to distinguish from normal tissue. Furthermore, Biotin-HClO was successfully employed for high-contrast imaging 4T1 tumor in mouse based on its tumor-targeting ability. All these results proved that Biotin-HClO is a useful analytical tool to detect ClO- and image tumor in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA