Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543849

RESUMO

Severe acute respiratory syndrome (SARS)-coronavirus (CoV), Middle Eastern respiratory syndrome (MERS)-CoV, and SARS-CoV-2 have seriously threatened human life in the 21st century. Emerging and re-emerging ß-coronaviruses after the coronavirus disease 2019 (COVID-19) epidemic remain possible highly pathogenic agents that can endanger human health. Thus, pan-ß-coronavirus vaccine strategies to combat the upcoming dangers are urgently needed. In this study, four LNP-mRNA vaccines, named O, D, S, and M, targeting the spike protein of SARS-CoV-2 Omicron, Delta, SARS-CoV, and MERS-CoV, respectively, were synthesized and characterized for purity and integrity. All four LNP-mRNAs induced effective cellular and humoral immune responses against the corresponding spike protein antigens in mice. Furthermore, LNP-mRNA S and D induced neutralizing antibodies against SARS-CoV and SARS-CoV-2, which failed to cross-react with MERS-CoV. Subsequent evaluation of sequential and cocktail immunizations with LNP-mRNA O, D, S, and M effectively elicited broad immunity against SARS-CoV-2 variants, SARS-CoV, and MERS-CoV. A direct comparison of the sequential with cocktail regimens indicated that the cocktail vaccination strategy induced more potent neutralizing antibodies and T-cell responses against heterotypic viruses as well as broader antibody activity against pan-ß-coronaviruses. Overall, these results present a potential pan-ß-coronavirus vaccine strategy for improved preparedness prior to future coronavirus threats.


Assuntos
Lipossomos , Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Animais , Camundongos , Humanos , Vacinas de mRNA , SARS-CoV-2/genética , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Modelos Animais de Doenças , Vacinas Virais/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Anticorpos Neutralizantes , RNA Mensageiro/genética , Imunidade , Anticorpos Antivirais
2.
Expert Rev Vaccines ; 23(1): 362-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444382

RESUMO

INTRODUCTION: Following the coronavirus disease pandemic, respiratory mucosal vaccines that elicit both mucosal and systemic immune responses have garnered increasing attention. However, human physiological characteristics pose significant challenges in the evaluation of mucosal immunity, which directly impedes the development and application of respiratory mucosal vaccines. AREAS COVERED: This study summarizes the characteristics of immune responses in the respiratory mucosa and reviews the current status and challenges in evaluating immune response to respiratory mucosal vaccines. EXPERT OPINION: Secretory Immunoglobulin A (S-IgA) is a major effector molecule at mucosal sites and a commonly used indicator for evaluating respiratory mucosal vaccines. However, the unique physiological structure of the respiratory tract pose significant challenges for the clinical collection and detection of S-IgA. Therefore, it is imperative to develop a sampling method with high collection efficiency and acceptance, a sensitive detection method, reference materials for mucosal antibodies, and to establish a threshold for S-IgA that correlates with clinical protection. Sample collection is even more challenging when evaluating mucosal cell immunity. Therefore, a mucosal cell sampling method with high operability and high tolerance should be established. Targets of the circulatory system capable of reflecting mucosal cellular immunity should also be explored.


Assuntos
Vacinas , Humanos , Imunidade nas Mucosas , Imunoglobulina A Secretora , Mucosa Respiratória , Vacinação , Anticorpos Antivirais
3.
Expert Rev Vaccines ; 23(1): 570-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733272

RESUMO

INTRODUCTION: The mRNA vaccine technologies have progressed rapidly in recent years. The COVID-19 pandemic has accelerated the application of mRNA vaccines, with research and development and clinical trials underway for many vaccines. Application of the quality by design (QbD) framework to mRNA vaccine development and establishing standardized quality control protocols for mRNA vaccines are essential for the continued development of high-quality mRNA vaccines. AREAS COVERED: mRNA vaccines include linear mRNA, self-amplifying mRNA, and circular RNA vaccines. This article summarizes the progress of research on quality control of these three types of vaccines and presents associated challenges and considerations. EXPERT OPINION: Although there has been rapid progress in research on linear mRNA vaccines, their degradation patterns remain unclear. In addition, standardized assays for key impurities, such as residual dsRNA and T7 RNA polymerase, are still lacking. For self-amplifying mRNA vaccines, a key focus should be control of stability in vivo and in vitro. For circular RNA vaccines, standardized assays, and reference standards for determining degree of circularization should be established and optimized.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Controle de Qualidade , Vacinas de mRNA , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/normas , COVID-19/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Desenvolvimento de Vacinas , Animais , RNA Mensageiro/genética , RNA Mensageiro/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética
4.
Emerg Microbes Infect ; 13(1): 2322671, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390796

RESUMO

The increasing incidence of diseases caused by Coxsackievirus A6 (CV-A6) and the presence of various mutants in the population present significant public health challenges. Given the concurrent development of multiple vaccines in China, it is challenging to objectively and accurately evaluate the level of neutralizing antibody response to different vaccines. The choice of the detection strain is a crucial factor that influences the detection of neutralizing antibodies. In this study, the National Institutes for Food and Drug Control collected a prototype strain (Gdula), one subgenotype D1, as well as 13 CV-A6 candidate vaccine strains and candidate detection strains (subgenotype D3) from various institutions and manufacturers involved in research and development. We evaluated cross-neutralization activity using plasma from naturally infected adults (n = 30) and serum from rats immunized with the aforementioned CV-A6 strains. Although there were differences between the geometric mean titer (GMT) ranges of human plasma and murine sera, the overall trends were similar. A significant effect of each strain on the neutralizing antibody test (MAX/MIN 48.0 ∼16410.3) was observed. Among all strains, neutralization of the S112 strain by 15 different sera resulted in higher neutralizing antibody titers (GMTS112 = 132.0) and more consistent responses across different genotypic immune sera (MAX/MIN = 48.0). Therefore, S112 may serve as a detection strain for NtAb testing in various vaccines, minimizing bias and making it suitable for evaluating the immunogenicity of the CV-A6 vaccine.


Assuntos
Anticorpos Neutralizantes , Vacinas , Adulto , Humanos , Animais , Camundongos , Ratos , Anticorpos Antivirais , Pesquisa , China
5.
Viruses ; 16(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675896

RESUMO

Neutralizing antibodies (NtAbs) against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are indicators of vaccine efficacy that enable immunity surveillance. However, the rapid mutation of SARS-CoV-2 variants prevents the timely establishment of standards required for effective XBB vaccine evaluation. Therefore, we prepared four candidate standards (No. 11, No. 44, No. 22, and No. 33) using plasma, purified immunoglobulin, and a broad-spectrum neutralizing monoclonal antibody. Collaborative calibration was conducted across nine Chinese laboratories using neutralization methods against 11 strains containing the XBB and BA.2.86 sublineages. This study demonstrated the reduced neutralization potency of the first International Standard antibodies to SARS-CoV-2 variants of concern against XBB variants. No. 44 displayed broad-spectrum neutralizing activity against XBB sublineages, effectively reduced interlaboratory variability for nearly all XBB variants, and effectively minimized the geometric mean titer (GMT) difference between the live and pseudotyped virus. No. 22 showed a broader spectrum and higher neutralizing activity against all strains but failed to reduce interlaboratory variability. Thus, No. 44 was approved as a National Standard for NtAbs against XBB variants, providing a unified NtAb measurement standard for XBB variants for the first time. Moreover, No. 22 was approved as a national reference reagent for NtAbs against SARS-CoV-2, offering a broad-spectrum activity reference for current and potentially emerging variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Testes de Neutralização , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , COVID-19/virologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Vacinas contra COVID-19/imunologia , China , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA