RESUMO
Estimates of ground-level ozone concentrations are necessary to determine the human health burden of ozone. To support the Global Burden of Disease Study, we produce yearly fine resolution global surface ozone estimates from 1990 to 2017 through a data fusion of observations and models. As ozone observations are sparse in many populated regions, we use a novel combination of the M3Fusion and Bayesian Maximum Entropy (BME) methods. With M3Fusion, we create a multimodel composite by bias-correcting and weighting nine global atmospheric chemistry models based on their ability to predict observations (8834 sites globally) in each region and year. BME is then used to integrate observations, such that estimates match observations at each monitoring site with the observational influence decreasing smoothly across space and time until the output matches the multimodel composite. After estimating at 0.5° resolution using BME, we add fine spatial detail from an additional model, yielding estimates at 0.1° resolution. Observed ozone is predicted more accurately (R2 = 0.81 at the test point, 0.63 at 0.1°, and 0.62 at 0.5°) than the multimodel mean (R2 = 0.28 at 0.5°). Global ozone exposure is estimated to be increasing, driven by highly populated regions of Asia and Africa, despite decreases in the United States and Russia.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , África , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ásia , Teorema de Bayes , Entropia , Monitoramento Ambiental , Humanos , Ozônio/análise , Federação Russa , Estados UnidosRESUMO
We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between -5.9% and 10.6%. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2-4%) in the tropical belt (30°N-30°S). For the mid-latitudes, we observed a 1.8 to 3.4 % increase in the Southern Hemisphere for RCP 2.6, 4.5 and 6.0, and found a 2.3% decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 to 5.5% for RCP 2.6, 4.5 and 6.0 and they are lower by 7.9% for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does.
RESUMO
Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.