Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Math Biosci ; 364: 109057, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562583

RESUMO

Gut microbiota plays a key role in host health under normal conditions. However, bacterial composition can be altered by external factors such as antibiotic (AB) intake. While there are many descriptive publications about the effects of AB on gut microbiota composition after treatment, the dynamics and interactions among the bacterial taxa are still poorly understood. In this work, we performed a longitudinal study of gut microbiome dynamics in B. germanica treated with kanamycin. The AB was supplied in three separate periods, giving the microbiota time to recover between each antibiotic intake. We applied two new statistical models, not focusing on pair-wise interactions, to more realistically study the interactions between groups of bacterial taxa and how some groups affect a single taxon. The first model provides information on the importance of a given genus, and the rest of the community, to define the abundance of that genus. The second model, on the other hand, provides details about the relationship between groups of bacteria, focusing on which community groups affect the taxa. These models help us to identify which bacteria are community-dependent in stress conditions, which taxa might be better adapted than the rest of the community, and which bacteria might be working together within the community to overcome the antibiotic. In addition, these models enable us to identify different bacterial groups that were separated in control conditions but were found together in treated conditions, suggesting that when the environment is more hostile (as it is under antibiotic treatment), the whole community tends to work together.


Assuntos
Microbioma Gastrointestinal , Microbiota , Estudos Longitudinais , Antibacterianos/farmacologia , Bactérias
3.
Biology (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37508385

RESUMO

Blattella germanica harbours two cohabiting symbiotic systems: an obligate endosymbiont, Blattabacterium, located inside bacteriocytes and vertically transmitted, which is key in nitrogen metabolism, and abundant and complex gut microbiota acquired horizontally (mainly by coprophagy) that must play an important role in host physiology. In this work, we use rifampicin treatment to deepen the knowledge on the relationship between the host and the two systems. First, we analysed changes in microbiota composition in response to the presence and removal of the antibiotic with and without faeces in one generation. We found that, independently of faeces supply, rifampicin-sensitive bacteria are strongly affected at four days of treatment, and most taxa recover after treatment, although some did not reach control levels. Second, we tried to generate an aposymbiotic population, but individuals that reached the second generation were severely affected and no third generation was possible. Finally, we established a mixed population with quasi-aposymbiotic and control nymphs sharing an environment in a blind experiment. The analysis of the two symbiotic systems in each individual after reaching the adult stage revealed that endosymbiont's load does not affect the composition of the hindgut microbiota, suggesting that there is no interaction between the two symbiotic systems in Blattella germanica.

4.
Biology (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681115

RESUMO

Blattella germanica presents a very complex symbiotic system, involving the following two kinds of symbionts: the endosymbiont Blattabacterium and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach's fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population, over several generations, with rifampicin, an antibiotic that only affects the endosymbiont during its extracellular phase, and decreases its amount in the following generation. As rifampicin also affects gut bacteria that are sensitive to this antibiotic, the treatment was performed during the first 12 days of the adult stage, which is the period when the endosymbiont infects the oocytes and lacks bacteriocyte protection. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota was able to recover, although it could not compensate for the endosymbiont role, and the host's fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA