Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2216024120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623188

RESUMO

Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse.


Assuntos
Ecossistema , Modelos Teóricos , Áreas Alagadas , Sequestro de Carbono , Sulfetos
2.
Glob Chang Biol ; 30(4): e17249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572713

RESUMO

Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.


Assuntos
Espécies Introduzidas , Alga Marinha , Mar Mediterrâneo , Ecossistema , Temperatura
3.
Proc Biol Sci ; 290(1990): 20221744, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629100

RESUMO

Climate-driven species redistributions are reshuffling the composition of marine ecosystems. How these changes alter ecosystem functions, however, remains poorly understood. Here we examine how impacts of herbivory change across a gradient of tropicalization in the Mediterranean Sea, which includes a steep climatic gradient and marked changes in plant nutritional quality and fish herbivore composition. We quantified individual feeding rates and behaviour of 755 fishes of the native Sarpa salpa, and non-native Siganus rivulatus and Siganus luridus. We measured herbivore and benthic assemblage composition across 20 sites along the gradient, spanning 30° of longitude and 8° of latitude. We coupled patterns in behaviour and composition with temperature measurements and nutrient concentrations to assess changes in herbivory under tropicalization. We found a transition in ecological impacts by fish herbivory across the Mediterranean from a predominance of seagrass herbivory in the west to a dominance of macroalgal herbivory in the east. Underlying this shift were changes in both individual feeding behaviour (i.e. food choice) and fish assemblage composition. The shift in feeding selectivity was consistent among temperate and warm-affiliated herbivores. Our findings suggest herbivory can contribute to the increased vulnerability of seaweed communities and reduced vulnerability of seagrass meadows in tropicalized ecosystems.


Assuntos
Herbivoria , Perciformes , Animais , Ecossistema , Peixes , Comportamento Alimentar
4.
New Phytol ; 233(4): 1657-1666, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34843111

RESUMO

The prevalence of local adaptation and phenotypic plasticity among populations is critical to accurately predicting when and where climate change impacts will occur. Currently, comparisons of thermal performance between populations are untested for most marine species or overlooked by models predicting the thermal sensitivity of species to extirpation. Here we compared the ecological response and recovery of seagrass populations (Posidonia oceanica) to thermal stress throughout a year-long translocation experiment across a 2800-km gradient in ocean climate. Transplants in central and warm-edge locations experienced temperatures > 29°C, representing thermal anomalies > 5°C above long-term maxima for cool-edge populations, 1.5°C for central and < 1°C for warm-edge populations. Cool-edge, central and warm-edge populations differed in thermal performance when grown under common conditions, but patterns contrasted with expectations based on thermal geography. Cool-edge populations did not differ from warm-edge populations under common conditions and performed significantly better than central populations in growth and survival. Our findings reveal that thermal performance does not necessarily reflect the thermal geography of a species. We demonstrate that warm-edge populations can be less sensitive to thermal stress than cooler, central populations suggesting that Mediterranean seagrasses have greater resilience to warming than current paradigms suggest.


Assuntos
Alismatales , Ecossistema , Aclimatação , Mudança Climática , Oceanos e Mares , Temperatura
5.
Glob Chang Biol ; 28(19): 5708-5725, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848527

RESUMO

Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change.


Assuntos
Organismos Aquáticos , Ecossistema , Mudança Climática , Mar Mediterrâneo
6.
Glob Chang Biol ; 27(11): 2592-2607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33843114

RESUMO

The introduction and establishment of exotic species often result in significant changes in recipient communities and their associated ecosystem services. However, usually the magnitude and direction of the changes are difficult to quantify because there is no pre-introduction data. Specifically, little is known about the effect of marine exotic macrophytes on organic carbon sequestration and storage. Here, we combine dating sediment cores (210 Pb) with sediment eDNA fingerprinting to reconstruct the chronology of pre- and post-arrival of the Red Sea seagrass Halophila stipulacea spreading into the Eastern Mediterranean native seagrass meadows. We then compare sediment organic carbon storage and burial rates before and after the arrival of H. stipulacea and between exotic (H. stipulacea) and native (C. nodosa and P. oceanica) meadows since the time of arrival following a Before-After-Control-Impact (BACI) approach. This analysis revealed that H. stipulacea arrived at the areas of study in Limassol (Cyprus) and West Crete (Greece) in the 1930s and 1970s, respectively. Average sediment organic carbon after the arrival of H. stipulacea to the sites increased in the exotic meadows twofold, from 8.4 ± 2.5 g Corg  m-2  year-1 to 14.7 ± 3.6 g Corg  m-2  year-1 , and, since then, burial rates in the exotic seagrass meadows were higher than in native ones of Cymodocea nodosa and Posidonia oceanica. Carbon isotopic data indicated a 50% increase of the seagrass contribution to the total sediment Corg pool since the arrival of H. stipulacea. Our results demonstrate that the invasion of H. stipulacea may play an important role in maintaining the blue carbon sink capacity in the future warmer Mediterranean Sea, by developing new carbon sinks in bare sediments and colonizing areas previously occupied by the colder thermal affinity P. oceanica.


Assuntos
Alismatales , Hydrocharitaceae , Carbono/análise , Sequestro de Carbono , Ecossistema , Sedimentos Geológicos , Oceano Índico , Mar Mediterrâneo
7.
Proc Biol Sci ; 287(1922): 20193001, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32156215

RESUMO

Exotic species often face new environmental conditions that are different from those that they are adapted to. The tropical seagrass Halophila stipulacea is a Lessepsian migrant that colonized the Mediterranean Sea around 100 years ago, where at present the minimum seawater temperature is cooler than in its native range in the Red Sea. Here, we tested if the temperature range in which H. stipulacea can exist is conserved within the species or if the exotic populations have shifted their thermal breadth and optimum due to the cooler conditions in the Mediterranean. We did so by comparing the thermal niche (e.g. optimal temperatures, and upper and lower thermal limits) of native (Saudi Arabia in the Red Sea) and exotic (Greece and Cyprus in the Mediterranean Sea) populations of H. stipulacea. We exposed plants to 12 temperature treatments ranging from 8 to 40°C for 7 days. At the end of the incubation period, we measured survival, rhizome elongation, shoot recruitment, net population growth and metabolic rates. Upper and lower lethal thermal thresholds (indicated by 50% plant mortality) were conserved across populations, but minimum and optimal temperatures for growth and oxygen production were lower for Mediterranean populations than for the Red Sea one. The displacement of the thermal niche of exotic populations towards the colder Mediterranean Sea regime could have occurred within 175 clonal generations.


Assuntos
Hydrocharitaceae/fisiologia , Termotolerância/fisiologia , Espécies Introduzidas , Mar Mediterrâneo , Rizoma , Água do Mar , Temperatura
8.
Glob Chang Biol ; 26(3): 1248-1258, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758645

RESUMO

Predictors for the ecological effects of non-native species are lacking, even though such knowledge is fundamental to manage non-native species and mitigate their impacts. Current theories suggest that the ecological effects of non-native species may be related to other concomitant anthropogenic stressors, but this has not been tested at a global scale. We combine an exhaustive meta-analysis of the ecological effects of marine non-native species with human footprint proxies to determine whether the ecological changes due to non-native species are modulated by co-occurring anthropogenic impacts. We found that non-native species had greater negative effects on native biodiversity where human population was high and caused reductions in individual performance where cumulative human impacts were large. On this basis we identified several marine ecoregions where non-native species may have the greatest ecological effects, including areas in the Mediterranean Sea and along the northwest coast of the United States. In conclusion, our global assessment suggests coexisting anthropogenic impacts can intensify the ecological effects of non-native species.


Assuntos
Ecossistema , Espécies Introduzidas , Biodiversidade , Ecologia , Humanos , Mar Mediterrâneo
9.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925564

RESUMO

Macroalgae form the most extensive and productive benthic marine vegetated habitats globally but their inclusion in Blue Carbon (BC) strategies remains controversial. We review the arguments offered to reject or include macroalgae in the BC framework, and identify the challenges that have precluded macroalgae from being incorporated so far. Evidence that macroalgae support significant carbon burial is compelling. The carbon they supply to sediment stocks in angiosperm BC habitats is already included in current assessments, so that macroalgae are de facto recognized as important donors of BC. The key challenges are (i) documenting macroalgal carbon sequestered beyond BC habitat, (ii) tracing it back to source habitats, and (iii) showing that management actions at the habitat lead to increased sequestration at the sink site. These challenges apply equally to carbon exported from BC coastal habitats. Because of the large carbon sink they support, incorporation of macroalgae into BC accounting and actions is an imperative. This requires a paradigm shift in accounting procedures as well as developing methods to enable the capacity to trace carbon from donor to sink habitats in the ocean.


Assuntos
Sequestro de Carbono , Alga Marinha , Carbono/metabolismo , Sedimentos Geológicos , Oceanos e Mares
10.
Glob Chang Biol ; 22(6): 2025-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26644007

RESUMO

Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.


Assuntos
Exoesqueleto/fisiologia , Calcificação Fisiológica , Cadeia Alimentar , Pectinidae/fisiologia , Água do Mar/química , Adaptação Fisiológica , Animais , Chile , Quitina/química , Quitina Sintase/química , Mudança Climática , Concentração de Íons de Hidrogênio , Oceanos e Mares , Consumo de Oxigênio
11.
Sci Total Environ ; 922: 170940, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38360304

RESUMO

Submarine Groundwater Discharge (SGD) delivers nutrients to the coastal sea triggering phytoplankton blooms, eutrophication, and can also serve as a pathway for contaminants. Wastewater treatment plants (WWTP) including injection wells in coastal areas influence coastal aquifers and might impact the composition and magnitude of SGD fluxes. In tourist areas, wastewater treatment may be less efficient and larger in volume during high seasons, potentially impacting nutrient fluxes from SGD and exacerbating environmental impacts. This study analyzes the nutrient transfer from treated wastewater injection in karstic aquifers to the coastal sea via SGD, considering the impacts of tourism seasonality. This study is conducted in Cala Deià, a small cove in the Balearic Islands, a Mediterranean tourist destination. The findings suggest that the seasonality of tourism, leading to variations in the volume of wastewater treated in the WWTP, influences the dynamics of the coastal aquifer. This leads to increased SGD water and nutrient fluxes to the sea in summer, i.e. the peak tourist season. The measured DIN, DIP, and DSi inventories in the cove are much larger in August than in April (3, 10, and 1.5 times higher, respectively) due to higher input of nutrients in summer due to SGD impacted by the WWTP. These elevated nutrient flows can support algal blooms in the cove, compromising water quality for local swimmers and tourists. Indeed, in August, shoreline stations exhibited eutrophic Chl-a concentrations, with peaks reaching approximately 4 mg Chl-a L-1. These elevated levels suggest the presence of an algal bloom during the survey. The anthropogenic origin of SGD-driven nutrients is traced in seawater and seagrass meadows, as evidenced by high ∂15N signatures indicative of polluted areas. Thus, the high pressure exerted on coastal areas by tourism activities increased the magnitude of SGD nutrient fluxes, thereby threatening coastal ecosystems and the services they provide.

12.
Glob Chang Biol ; 19(12): 3629-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123496

RESUMO

The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B. Mediterranean warming, therefore, is expected to enhance P. oceanica sulphide stress, and thus compromise the survival of this key habitat along its entire depth distribution range.


Assuntos
Alismatales/fisiologia , Aquecimento Global , Folhas de Planta/metabolismo , Estresse Fisiológico/fisiologia , Sulfetos/metabolismo , Alismatales/crescimento & desenvolvimento , Meio Ambiente , Espectrometria de Massas , Mar Mediterrâneo , Folhas de Planta/crescimento & desenvolvimento , Dinâmica Populacional , Estações do Ano , Água do Mar/química , Espanha , Temperatura
13.
Nat Commun ; 14(1): 8500, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135682

RESUMO

Coastal vegetated ecosystems are acknowledged for their capacity to sequester organic carbon (OC), known as blue C. Yet, blue C global accounting is incomplete, with major gaps in southern hemisphere data. It also shows a large variability suggesting that the interaction between environmental and biological drivers is important at the local scale. In southwest Atlantic salt marshes, to account for the space occupied by crab burrows, it is key to avoid overestimates. Here we found that southern southwest Atlantic salt marshes store on average 42.43 (SE = 27.56) Mg OC·ha-1 (40.74 (SE = 2.7) in belowground) and bury in average 47.62 g OC·m-2·yr-1 (ranging from 7.38 to 204.21). Accretion rates, granulometry, plant species and burrowing crabs were identified as the main factors in determining belowground OC stocks. These data lead to an updated global estimation for stocks in salt marshes of 185.89 Mg OC·ha-1 (n = 743; SE = 4.92) and a C burial rate of 199.61 g OC·m-2·yr-1 (n = 193; SE = 16.04), which are lower than previous estimates.


Assuntos
Braquiúros , Áreas Alagadas , Animais , Ecossistema , Carbono , Sequestro de Carbono
14.
Front Plant Sci ; 14: 1088643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021321

RESUMO

In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.

15.
Glob Chang Biol ; 18(10): 2981-2994, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741817

RESUMO

We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub-Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice-free periods and higher water temperature. The depth limit of 10% kelp cover was 9-14 m at the northernmost sites (77-78 ºN) with only 94-133 ice-free days per year, but extended to depths of 21-33 m further south (73 ºN-64 ºN) where >160 days per year were ice-free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open-water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter-annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open-water period increases. As kelps increase carbon-flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem.

16.
Ambio ; 41(1): 44-55, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22270704

RESUMO

The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.


Assuntos
Mudança Climática , Ecossistema , Camada de Gelo , Regiões Árticas , Conservação dos Recursos Naturais , Monitoramento Ambiental , Biologia Marinha , Modelos Teóricos , Oceanos e Mares , Plâncton/crescimento & desenvolvimento , Estações do Ano
17.
Int J Syst Evol Microbiol ; 61(Pt 9): 2191-2196, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20935088

RESUMO

Five novel Gram-reaction-negative aerobic marine bacterial strains with DNA G+C contents <50 mol% were isolated from the seagrass Posidonia oceanica. 16S rRNA sequence analysis indicated that they belonged to the genus Marinomonas. Major fatty acid compositions, comprising C10:0 3-OH, C16:0, C16:1ω7c and C18:1ω7c, supported the affiliation of these strains to the genus Marinomonas. Strains IVIA-Po-14b(T), IVIA-Po-145(T) and IVIA-Po-155(T) were closely related to Marinomonas pontica 46-16(T), according to phylogenetic analysis. However, DNA-DNA hybridization values <35 % among these strains revealed that they represented different species. Further differences in the phenotypes and minor fatty acid compositions were also found among the strains. Another two strains, designated IVIA-Po-181(T) and IVIA-Po-159(T), were found to be closely related to M. dokdonensis DSW10-10(T) but DNA-DNA relatedness levels <40 % in pairwise comparisons, as well as some additional differences in phenotypes and fatty acid compositions supported the creation of two novel species. Accordingly, strains IVIA-Po-14b(T )( = CECT 7730(T)  = NCIMB 14671(T)), IVIA-Po-145(T) ( = CECT 7377(T)  = NCIMB 14431(T)), IVIA-Po-155(T) ( = CECT 7731(T)  = NCIMB 14672(T)), IVIA-Po-181(T) ( = CECT 7376(T)  = NCIMB 14433(T)) and IVIA-Po-159(T) ( = CECT 7732(T)  = NCIMB 14673(T)) represent novel species, for which the names Marinomonas alcarazii sp. nov., Marinomonas rhizomae sp. nov., Marinomonas foliarum sp. nov., Marinomonas posidonica sp. nov. and Marinomonas aquiplantarum sp. nov. are proposed, respectively.


Assuntos
Alismatales/microbiologia , Marinomonas/classificação , Marinomonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Marinomonas/genética , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Environ Sci Technol ; 45(21): 9122-32, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21958109

RESUMO

Empirical relationships between phytoplankton biomass and nutrient concentrations established across a wide range of different ecosystems constitute fundamental quantitative tools for predicting effects of nutrient management plans. Nutrient management plans based on such relationships, mostly established over trends of increasing rather than decreasing nutrient concentrations, assume full reversibility of coastal eutrophication. Monitoring data from 28 ecosystems located in four well-studied regions were analyzed to study the generality of chlorophyll a versus nutrient relationships and their applicability for ecosystem management. We demonstrate significant differences across regions as well as between specific coastal ecosystems within regions in the response of chlorophyll a to changing nitrogen concentrations. We also show that the chlorophyll a versus nitrogen relationships over time constitute convoluted trajectories rather than simple unique relationships. The ratio of chlorophyll a to total nitrogen almost doubled over the last 30-40 years across all regions. The uniformity of these trends, or shifting baselines, suggest they may result from large-scale changes, possibly associated with global climate change and increasing human stress on coastal ecosystems. Ecosystem management must, therefore, develop adaptation strategies to face shifting baselines and maintain ecosystem services at a sustainable level rather than striving to restore an ecosystem state of the past.


Assuntos
Ecossistema , Nitrogênio/metabolismo , Fitoplâncton , Água do Mar
19.
Sci Rep ; 11(1): 11067, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040111

RESUMO

Seagrass ecosystems rank amongst the most efficient natural carbon sinks on earth, sequestering CO2 through photosynthesis and storing organic carbon (Corg) underneath their soils for millennia and thereby, mitigating climate change. However, estimates of Corg stocks and accumulation rates in seagrass meadows (blue carbon) are restricted to few regions, and further information on spatial variability is required to derive robust global estimates. Here we studied soil Corg stocks and accumulation rates in seagrass meadows across the Colombian Caribbean. We estimated that Thalassia testudinum meadows store 241 ± 118 Mg Corg ha-1 (mean ± SD) in the top 1 m-thick soils, accumulated at rates of 122 ± 62 and 15 ± 7 g Corg m-2 year-1 over the last ~ 70 years and up to 2000 years, respectively. The tropical climate of the Caribbean Sea and associated sediment run-off, together with the relatively high primary production of T. testudinum, influencing biotic and abiotic drivers of Corg storage linked to seagrass and soil respiration rates, explains their relatively high Corg stocks and accumulation rates when compared to other meadows globally. Differences in soil Corg storage among Colombian Caribbean regions are largely linked to differences in the relative contribution of Corg sources to the soil Corg pool (seagrass, algae Halimeda tuna, mangrove and seston) and the content of soil particles < 0.016 mm binding Corg and enhancing its preservation. Despite the moderate areal extent of T. testudinum in the Colombian Caribbean (661 km2), it sequesters around 0.3 Tg CO2 year-1, which is equivalent to ~ 0.4% of CO2 emissions from fossil fuels in Colombia. This study adds data from a new region to a growing dataset on seagrass blue carbon and further explores differences in meadow Corg storage based on biotic and abiotic environmental factors, while providing the basis for the implementation of seagrass blue carbon strategies in Colombia.

20.
Nat Ecol Evol ; 4(1): 109-114, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31900450

RESUMO

Vertical migration to reach cooler waters is a suitable strategy for some marine organisms to adapt to ocean warming. Here, we calculate that realized vertical isotherm migration rates averaged -6.6 + 18.8 m dec-1 across the global ocean between 1980 and 2015. Throughout this century (2006-2100), surface isotherms are projected to deepen at an increasing rate across the globe, averaging -32.3 m dec-1 under the representative concentration pathway (RCP)8.5 'business as usual' emissions scenario, and -18.7 m dec-1 under the more moderate RCP4.5 scenario. The vertical redistribution required by organisms to follow surface isotherms over this century is three to four orders of magnitude less than the equivalent horizontal redistribution distance. However, the seafloor depth and the depth of the photic layer pose ultimate limits to the vertical migration possible by species. Both limits will be reached by the end of this century across much of the ocean, leading to a rapid global compression of the three-dimensional (3D) habitat of many marine organisms. Phytoplankton diversity may be maintained but displaced toward the base of the photic layer, whereas highly productive benthic habitats, especially corals, will have their suitable 3D habitat rapidly reduced.


Assuntos
Antozoários , Mudança Climática , Animais , Organismos Aquáticos , Ecossistema , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA