Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biotechnol Bioeng ; 117(4): 1037-1047, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31956981

RESUMO

The encapsulation of biopharmaceuticals into micro- or nanoparticles is a strategy frequently used to prevent degradation or to achieve the slow release of therapeutics and vaccines. Protein bodies (PBs), which occur naturally as storage organelles in seeds, can be used as such carrier vehicles. The fusion of the N-terminal sequence of the maize storage protein, γ-zein, to other proteins is sufficient to induce the formation of PBs, which can be used to bioencapsulate recombinant proteins directly in the plant production host. In addition, the immunostimulatory effects of zein have been reported, which are advantageous for vaccine delivery. However, little is known about the interaction between zein PBs and mammalian cells. To better understand this interaction, fluorescent PBs, resulting from the fusion of the N-terminal portion of zein to a green fluorescent protein, was produced in Nicotiana benthamiana leaves, recovered by a filtration-based downstream procedure, and used to investigate their internalization efficiency into mammalian cells. We show that fluorescent PBs were efficiently internalized into intestinal epithelial cells and antigen-presenting cells (APCs) at a higher rate than polystyrene beads of comparable size. Furthermore, we observed that PBs stimulated cytokine secretion by epithelial cells, a characteristic that may confer vaccine adjuvant activities through the recruitment of APCs. Taken together, these results support the use of zein fusion proteins in developing novel approaches for drug delivery based on controlled protein packaging into plant PBs.


Assuntos
Produtos Biológicos , Proteínas de Fluorescência Verde , Proteínas Recombinantes de Fusão , Zeína , Administração Oral , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Linhagem Celular , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Folhas de Planta/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Células U937 , Zeína/química , Zeína/genética , Zeína/metabolismo
2.
Plant Biotechnol J ; 17(2): 410-420, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29993179

RESUMO

Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at-risk animals, often at very high cost. Current CSFV-modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first-generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide-spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium-mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil-in-water emulsion adjuvants. We report the manufacturing of adjuvanted, plant-made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single-dose vaccination, which was accompanied by strong virus neutralization antibody responses.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Vacinação/veterinária , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Suínos , Nicotiana/genética , Nicotiana/metabolismo , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/genética
3.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621113

RESUMO

N-glycosylation has been shown to affect the pharmacokinetic properties of several classes of biologics, including monoclonal antibodies, blood factors, and lysosomal enzymes. In the last two decades, N-glycan engineering has been employed to achieve a N-glycosylation profile that is either more consistent or aligned with a specific improved activity (i.e., effector function or serum half-life). In particular, attention has focused on engineering processes in vivo or in vitro to alter the structure of the N-glycosylation of the Fc region of anti-cancer monoclonal antibodies in order to increase antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we applied the mannosidase I inhibitor kifunensine to the Nicotiana benthamiana transient expression platform to produce an afucosylated anti-CD20 antibody (rituximab). We determined the optimal concentration of kifunensine used in the infiltration solution, 0.375 µM, which was sufficient to produce exclusively oligomannose glycoforms, at a concentration 14 times lower than previously published levels. The resulting afucosylated rituximab revealed a 14-fold increase in ADCC activity targeting the lymphoma cell line Wil2-S when compared with rituximab produced in the absence of kifunensine. When applied to the cost-effective and scalable N. benthamiana transient expression platform, the use of kifunensine allows simple in-process glycan engineering without the need for transgenic hosts.


Assuntos
Alcaloides/farmacologia , Engenharia Metabólica/métodos , Nicotiana/metabolismo , Polissacarídeos/metabolismo , Rituximab/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antígenos CD20/metabolismo , Fucose/metabolismo , Glicosilação/efeitos dos fármacos , Manose/metabolismo , Manosidases/antagonistas & inibidores , Manosidases/metabolismo , Nicotiana/efeitos dos fármacos
4.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385073

RESUMO

N-glycosylation profoundly affects the biological stability and function of therapeutic proteins, which explains the recent interest in glycoengineering technologies as methods to develop biobetter therapeutics. In current manufacturing processes, N-glycosylation is host-specific and remains difficult to control in a production environment that changes with scale and production batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined protein glycoforms, but needs to be combined with a cost-effective and scalable production method. An efficient chemoenzymatic glycan remodeling technology using a plant expression system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose or ß-1,2-xylose residues was produced. When compared with the innovator product Rituxan®, the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20 antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan heterogeneity and provide affordable customization of therapeutics' glycosylation for maximal and targeted biological activity. This feature can reduce cost and provide an affordable platform to manufacture biobetter antibodies.


Assuntos
Rituximab/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Glicosilação , Proteínas Recombinantes , Rituximab/metabolismo , Nicotiana/genética
5.
Plant Biotechnol J ; 13(8): 1180-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26387511

RESUMO

Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever.


Assuntos
Terapia Biológica/economia , Preparações Farmacêuticas/economia , Preparações Farmacêuticas/metabolismo , Plantas/metabolismo , Anticorpos Monoclonais/biossíntese , Biotecnologia , Humanos , Plantas/genética , Plantas Geneticamente Modificadas
6.
Plant Mol Biol ; 83(1-2): 105-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23553222

RESUMO

Many plant-based systems have been developed as bioreactors to produce recombinant proteins. The choice of system for large-scale production depends on its intrinsic expression efficiency and its propensity for scale-up, post-harvest storage and downstream processing. Factors that must be considered include the anticipated production scale, the value and intended use of the product, the geographical production area, the proximity of processing facilities, intellectual property, safety and economics. It is also necessary to consider whether different species and organs affect the subcellular trafficking, structure and qualitative properties of recombinant proteins. In this article we discuss the subcellular localization and N-glycosylation of two commercially-relevant recombinant glycoproteins (Aspergillus niger phytase and anti-HIV antibody 2G12) produced in different plant species and organs. We augment existing data with novel results based on the expression of the same recombinant proteins in Arabidopsis and tobacco seeds, focusing on similarities and subtle differences in N-glycosylation that often reflect the subcellular trafficking route and final destination, as well as differences generated by unique enzyme activities in different species and tissues. We discuss the potential consequences of such modifications on the stability and activity of the recombinant glycoproteins.


Assuntos
6-Fitase/metabolismo , Anticorpos Monoclonais/metabolismo , Glicoproteínas/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , 6-Fitase/genética , Anticorpos Monoclonais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Anticorpos Amplamente Neutralizantes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicoproteínas/genética , Glicosilação , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/genética , Estabilidade Proteica , Transporte Proteico , Proteínas Recombinantes/genética , Sementes/genética , Sementes/metabolismo , Especificidade da Espécie , Nicotiana/genética , Nicotiana/metabolismo
7.
Plant Biotechnol J ; 11(3): 296-304, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23078138

RESUMO

Cottonseed remains a low-value by-product of lint production mainly due to the presence of toxic gossypol that makes it unfit for monogastrics. Ultra-low gossypol cottonseed (ULGCS) lines were developed using RNAi knockdown of δ-cadinene synthase gene(s) in Gossypium hirsutum. The purpose of the current study was to assess the stability and specificity of the ULGCS trait and evaluate the agronomic performance of the transgenic lines. Trials conducted over a period of 3 years show that the ULGCS trait was stable under field conditions and the foliage/floral organs of transgenic lines contained wild-type levels of gossypol and related terpenoids. Although it was a relatively small-scale study, we did not observe any negative effects on either the yield or quality of the fibre and seed in the transgenic lines compared with the nontransgenic parental plants. Compositional analysis was performed on the seeds obtained from plants grown in the field during 2009. As expected, the major difference between the ULGCS and wild-type cottonseeds was in terms of their gossypol levels. With the exception of oil content, the composition of ULGCS was similar to that of nontransgenic cottonseeds. Interestingly, the ULGCS had significantly higher (4%-8%) oil content compared with the seeds from the nontransgenic parent. Field trial results confirmed the stability and specificity of the ULGCS trait suggesting that this RNAi-based product has the potential to be commercially viable. Thus, it may be possible to enhance and expand the nutritional utility of the annual cottonseed output to fulfil the ever-increasing needs of humanity.


Assuntos
Gossypium/metabolismo , Gossipol/biossíntese , Fibra de Algodão/normas , Produtos Agrícolas/metabolismo , Gossypium/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Sementes/metabolismo
8.
Plant Cell ; 22(9): 3177-87, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20858844

RESUMO

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.


Assuntos
Magnaporthe/patogenicidade , Oryza/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Raízes de Plantas/genética , RNA de Plantas
9.
Plant Biotechnol J ; 10(2): 174-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21902797

RESUMO

Cottonseed, containing 22.5% protein, remains an under-utilized and under-valued resource because of the presence of toxic gossypol. RNAi-knockdown of δ-cadinene synthase gene(s) was used to engineer plants that produced ultra-low gossypol cottonseed (ULGCS). In the original study, we observed that RNAi plants, a month or older, maintain normal complement of gossypol and related terpenoids in the roots, foliage, floral organs, and young bolls. However, the terpenoid levels and profile of the RNAi lines during the early stages of germination, under normal conditions and in response to pathogen exposure, had not been examined. Results obtained in this study show that during the early stages of seed germination/seedling growth, in both non-transgenic and RNAi lines, the tissues derived directly from bulk of the seed kernel (cotyledon and hypocotyl) synthesize little, if any new terpenoids. However, the growing root tissue and the emerging true leaves of RNAi seedlings showed normal, wild-type terpenoid levels. Biochemical and molecular analyses showed that pathogen-challenged parts of RNAi seedlings are capable of launching a terpenoid-based defence response. Nine different RNAi lines were monitored for five generations. The results show that, unlike the unstable nature of antisense-mediated low seed-gossypol phenotype, the RNAi-mediated ULGCS trait exhibited multi-generational stability.


Assuntos
Gossypium/genética , Gossypium/metabolismo , Gossipol/metabolismo , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Engenharia Genética , Variação Genética , Instabilidade Genômica , Germinação , Fenótipo , Plantas Geneticamente Modificadas , Interferência de RNA
10.
Plant Physiol ; 153(2): 693-702, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20388665

RESUMO

Zeins are the major storage proteins in maize (Zea mays) endosperm, and their accumulation in zein bodies derived from the endoplasmic reticulum is well characterized. In contrast, relatively little is known about post-Golgi compartments or the trafficking of vacuolar proteins in maize endosperm, specifically the presence of globulins in structures resembling protein storage vacuoles that appear in early to mid-stage seed development. We investigated this pathway by expressing and analyzing a recombinant reporter glycoprotein during endosperm maturation, using a combination of microscopy and sensitive glycopeptide analysis. Specific N-glycan acceptor sites on the protein were followed through the stages of grain development, revealing a shift from predominantly paucimannosidic vacuolar glycoforms to predominantly trimmed glycan structures lacking fucose. This was accompanied by a change in the main subcellular localization of the protein from large protein storage vacuole-like post-Golgi organelles to the endoplasmic reticulum and zein bodies. The endogenous storage proteins corn alpha-globulin and corn legumin-1 showed a similar spatiotemporal profile both in transgenic plants expressing the reporter glycoprotein and in wild-type plants. This indicates that the shift of the intracellular trafficking route, as observed with our reporter glycoprotein, may be a common strategy in maize seed development.


Assuntos
Endosperma/crescimento & desenvolvimento , Zea mays/embriologia , Zeína/metabolismo , 6-Fitase/metabolismo , Retículo Endoplasmático/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Glicosilação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/análise , Transporte Proteico , Vacúolos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zeína/genética
11.
MAbs ; 8(8): 1456-1466, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559626

RESUMO

Plant-based biomanufacturing of therapeutic proteins is a relatively new platform with a small number of commercial-scale facilities, but offers advantages of linear scalability, reduced upstream complexity, reduced time to market, and potentially lower capital and operating costs. In this study we present a detailed process simulation model for a large-scale new "greenfield" biomanufacturing facility that uses transient agroinfiltration of Nicotiana benthamiana plants grown hydroponically indoors under light-emitting diode lighting for the production of a monoclonal antibody. The model was used to evaluate the total capital investment, annual operating cost, and cost of goods sold as a function of mAb expression level in the plant (g mAb/kg fresh weight of the plant) and production capacity (kg mAb/year). For the Base Case design scenario (300 kg mAb/year, 1 g mAb/kg fresh weight, and 65% recovery in downstream processing), the model predicts a total capital investment of $122 million dollars and cost of goods sold of $121/g including depreciation. Compared with traditional biomanufacturing platforms that use mammalian cells grown in bioreactors, the model predicts significant reductions in capital investment and >50% reduction in cost of goods compared with published values at similar production scales. The simulation model can be modified or adapted by others to assess the profitability of alternative designs, implement different process assumptions, and help guide process development and optimization.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Biotecnologia/métodos , Nicotiana , Plantas Geneticamente Modificadas , Anticorpos Monoclonais/economia , Reatores Biológicos/economia , Biotecnologia/economia , Humanos
12.
J Biotechnol ; 120(1): 121-34, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16026877

RESUMO

Plants are emerging as a promising alternative to conventional platforms for the large-scale production of recombinant proteins. This field of research, known as molecular farming, is developing rapidly and several plant-derived recombinant proteins are already in advanced clinical trials. However, the full potential of molecular farming can only be realized if we gain a fundamental understanding of biological processes regulating the production and accumulation of functional recombinant proteins in plants. Recent studies indicate that species- and tissue-specific factors as well as plant physiology can have a significant impact on the amount and quality of the recombinant product. More detailed comparative studies are needed for each product, including the analysis of expression levels, biochemical properties, in vitro activity and subcellular localization. In this review we include the first results from an extensive comparative study in which the highly glycosylated enzyme phytase (from the fungus Aspergillus niger) was produced in different plant species (including tobacco and the model legume Medicago truncatula). Special emphasis is placed on M. truncatula, whose leaves accumulated the highest levels of active phytase. We discuss the potential of this species as a novel production host.


Assuntos
Reatores Biológicos , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Técnicas de Cultura de Células/métodos , Plantas Geneticamente Modificadas/metabolismo , Avaliação da Tecnologia Biomédica , Transfecção/métodos
13.
Planta ; 227(3): 649-58, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17943311

RESUMO

A number of recent reports suggest that the functional specialization of plant cells in storage organs can influence subcellular protein sorting, so that the fate of a recombinant protein tends to differ between seeds and leaves. In order to test the general applicability of this hypothesis, we investigated the fate of a model recombinant glycoprotein in the leaves and seeds of a leguminous plant, Medicago truncatula. Detailed analysis of immature seeds by immunofluorescence and electron microscopy showed that recombinant phytase carrying a signal peptide for entry into the endoplasmic reticulum was efficiently secreted from storage cotyledon cells. A second version of the protein carrying a C-terminal KDEL tag for retention in the endoplasmic reticulum was predominantly retained in the ER of seed cotyledon cells, but some of the protein was secreted to the apoplast and some was deposited in storage vacuoles. Importantly, the fate of the recombinant protein in the leaves was nearly identical to that in the seeds from the same plant. This shows that in M. truncatula, the unanticipated partial vacuolar delivery and secretion is not a special feature of seed cotyledon tissue, but are conserved in different specialized tissues. Further investigation revealed that the unexpected fate of the tagged variant of phytase likely resulted from partial loss of the KDEL tag in both leaves and seeds. Our results indicate that the previously observed aberrant deposition of recombinant proteins into storage organelles of seed tissue is not a general reflection of functional specialization, but also depends on the species of plant under investigation. This discovery will have an impact on the production of recombinant pharmaceutical proteins in plants.


Assuntos
6-Fitase/metabolismo , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Retículo Endoplasmático/metabolismo , Medicago truncatula/genética , Medicago truncatula/ultraestrutura , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Sinais Direcionadores de Proteínas , Sementes/ultraestrutura , Vacúolos/metabolismo
14.
Plant Physiol ; 141(2): 578-86, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16632592

RESUMO

Recombinant proteins directed to the secretory pathway in plants require a signal peptide for entry into the endoplasmic reticulum. In the absence of further targeting information, such proteins are generally secreted via the default pathway to the apoplast. This has been well documented in protoplasts and leaf tissue, but the trafficking of recombinant proteins in seeds and other storage tissues has rarely been investigated. We used Aspergillus niger phytase as a model glycoprotein to compare the intracellular fate of a recombinant protein in the leaves and seeds of rice (Oryza sativa). Using fluorescence and electron microscopy we showed that the recombinant protein was efficiently secreted from leaf cells as expected. In contrast, within endosperm cells it was retained in endoplasmic reticulum-derived prolamin bodies and protein storage vacuoles. Consistent with our immunolocalization data, the phytase produced in endosperm cells possessed oligomannose and vacuolar-type N-glycans [Man(3)(Xyl)(Fuc)GlcNAc(2)], whereas the phytase produced in leaves contained predominantly secretion-type N-glycans [GlcNAc(2)Man(3)(Xyl)(Fuc)GlcNAc(2)]. The latter could not be detected in preparations of the endosperm-derived phytase. Our results show that the intracellular deposition and modification of a recombinant protein is tissue dependent.


Assuntos
Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , 6-Fitase/química , 6-Fitase/genética , Sequência de Bases , Primers do DNA , Retículo Endoplasmático/metabolismo , Hibridização In Situ , Microscopia Eletrônica , Microscopia de Fluorescência , Peso Molecular , Oryza/enzimologia , Oryza/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , Sementes/metabolismo
15.
Plant Mol Biol ; 59(6): 869-80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16307363

RESUMO

We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.


Assuntos
6-Fitase/química , Aspergillus/enzimologia , Ferritinas/química , Técnicas Genéticas , Glycine max/metabolismo , Ferro/farmacocinética , Proteínas de Plantas/química , Proteínas Recombinantes/química , Zea mays/enzimologia , 6-Fitase/metabolismo , Ácido Ascórbico/metabolismo , Aspergillus/genética , Células CACO-2 , DNA Complementar/metabolismo , Difusão , Ferritinas/farmacologia , Genes de Plantas , Vetores Genéticos , Humanos , Immunoblotting , Ferro/metabolismo , Ferro/farmacologia , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Recombinantes/farmacologia , Proteínas de Soja/química , Fatores de Tempo , Transgenes , Zea mays/genética , Zea mays/metabolismo
16.
Plant Physiol ; 136(3): 3457-66, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15489278

RESUMO

Protein transport within cereal endosperm cells is complicated by the abundance of endoplasmic reticulum (ER)-derived and vacuolar protein bodies. For wheat storage proteins, two major transport routes run from the ER to the vacuole, one bypassing and one passing through the Golgi. Proteins traveling along each route converge at the vacuole and form aggregates. To determine the impact of this trafficking system on the fate of recombinant proteins expressed in wheat endosperm, we used confocal and electron microscopy to investigate the fate of three recombinant proteins containing different targeting information. KDEL-tagged recombinant human serum albumin, which is retrieved to the ER lumen in leaf cells, was deposited in prolamin aggregates within the vacuole of endosperm cells, most likely following the bulk of endogenous glutenins. Recombinant fungal phytase, a glycoprotein designed for secretion, was delivered to the same compartment, with no trace of the molecule in the apoplast. Glycan analysis revealed that this protein had passed through the Golgi. The localization of human serum albumin and phytase was compared to that of recombinant legumin, which contains structural targeting information directing it to the vacuole. Uniquely, legumin accumulated in the globulin inclusion bodies at the periphery of the prolamin bodies, suggesting a different mode of transport and/or aggregation. Our results demonstrate that recombinant proteins are deposited in an unexpected pattern within wheat endosperm cells, probably because of the unique storage properties of this tissue. Our data also confirm that recombinant proteins are invaluable tools for the analysis of protein trafficking in cereals.


Assuntos
Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Triticum/metabolismo , 6-Fitase/química , 6-Fitase/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Prolaminas , Sinais Direcionadores de Proteínas , Transporte Proteico , Sementes/ultraestrutura , Albumina Sérica/metabolismo , Triticum/ultraestrutura , Leguminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA