Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(7): 7205-7235, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35196011

RESUMO

Crude oils are complex mixtures of organic molecules, of which asphaltenes are the heaviest component. Asphaltene precipitation and deposition have been recognized to be a significant problem in oil production, transmission, and processing facilities. These macromolecular aromatics are challenging to characterize due to their heterogeneity and complex molecular structure. Microfluidic devices are able to capture key characteristics of reservoir rocks and provide new insights into the transport, reactions, and chemical interactions governing fluids used in the oil and gas industry. Understanding the microscale phenomena has led to better design of macroscale processes used by the industry. One area that has seen significant growth is in the area of chemical analysis under flowing conditions. Microfluidics and microscale analysis have advanced the understanding of complex mixtures by providing in situ imaging that can be combined with other chemical characterization methods to give details of how oil, water, and added chemicals interface with pore-scale detail. This review article aims to showcase how microfluidic devices offer new physical, chemical, and dynamic information on the behavior of asphaltenes. Specifically, asphaltene deposition and related flow assurance problems, interfacial properties and rheology, and evaluation of remediation strategies studied in microchannels and microfluidic porous media are presented. Examples of successful applications that address key asphaltene-related problems highlight the advances of microscale systems as a tool for advancing the physicochemical characterization of complex fluids for the oil and gas industry.


Assuntos
Técnicas Analíticas Microfluídicas , Hidrocarbonetos Policíclicos Aromáticos , Misturas Complexas , Hidrocarbonetos Policíclicos Aromáticos/química , Água/química
2.
Langmuir ; 39(24): 8532-8539, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290000

RESUMO

Understanding molecular transport in polyelectrolyte brushes (PEBs) is crucial for applications such as separations, drug delivery, anti-fouling, and biosensors, where structural features of the polymer control intermolecular interactions. The complex structure and local heterogeneity of PEBs, while theoretically predicted, are not easily accessed with conventional experimental methods. In this work, we use 3D single-molecule tracking to understand transport behavior within a cationic poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) brush using an anionic dye, Alexa Fluor 546, as the probe. The analysis is done by a parallelized, unbiased 3D tracking algorithm. Our results explicitly demonstrate that spatial heterogeneity within the brush manifests as heterogeneity of single-molecule displacements. Two distinct populations of probe motion are identified, with anticorrelated axial and lateral transport confinement, which we believe to correspond to intra- vs inter-chain probe motion.

3.
Soft Matter ; 19(23): 4333-4344, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37254920

RESUMO

We use molecular simulation to investigate the pH response of sequence-controlled polyampholyte brushes (PABs) with polymer chains consisting of alternating blocks of weakly acidic and basic monomers. Changes in the ionization state, height, lateral structure, and chain conformations of PABs with pH are found to differ qualitatively from those observed for polyelectrolyte brushes. Grafting density has a relatively modest effect on PAB properties. By contrast, monomer sequence strongly affects the pH response, with the extent of the response increasing with the block size. This trend is attributed to strong electrostatic attractions between oppositely charged blocks, which lead to an increase in chain backfolding as block size increases. This behavior is consistent with that observed for polyampholytes with similar monomer sequences in solution in previous studies. Our study shows that monomer sequence can be used to tune the pH response of weak PABs to generate stimuli-responsive surfaces.

4.
Anal Chem ; 93(32): 11200-11207, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34346671

RESUMO

Conformational changes of antibodies and other biologics can decrease the effectiveness of pharmaceutical separations. Hence, a detailed mechanistic picture of antibody-stationary phase interactions that occur during ion-exchange chromatography (IEX) can provide critical insights. This work examines antibody conformational changes and how they perturb antibody motion and affect ensemble elution profiles. We combine IEX, three-dimensional single-protein tracking, and circular dichroism spectroscopy to investigate conformational changes of a model antibody, immunoglobulin G (IgG), as it interacts with the stationary phase as a function of salt conditions. The results indicate that the absence of salt enhances electrostatic attraction between IgG and the stationary phase, promotes surface-induced unfolding, slows IgG motion, and decreases elution from the column. Our results reveal previously unreported details of antibody structural changes and their influence on macroscale elution profiles.


Assuntos
Imunoglobulina G , Cloreto de Sódio , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Concentração de Íons de Hidrogênio
5.
J Am Chem Soc ; 140(5): 1632-1638, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29314832

RESUMO

When oppositely charged polymers are mixed, counterion release drives phase separation; understanding this process is a key unsolved problem in polymer science and biophysical chemistry, particularly for nucleic acids, polyanions whose biological functions are intimately related to their high charge density. In the cell, complexation by basic proteins condenses DNA into chromatin, and membraneless organelles formed by liquid-liquid phase separation of RNA and proteins perform vital functions and have been linked to disease. Electrostatic interactions are also the primary method used for assembly of nanoparticles to deliver therapeutic nucleic acids into cells. This work describes complexation experiments with oligonucleotides and cationic peptides spanning a wide range of polymer lengths, concentrations, and structures, including RNA and methylphosphonate backbones. We find that the phase of the complexes is controlled by the hybridization state of the nucleic acid, with double-stranded nucleic acids forming solid precipitates while single-stranded oligonucleotides form liquid coacervates, apparently due to their lower charge density. Adding salt "melts" precipitates into coacervates, and oligonucleotides in coacervates remain competent for sequence-specific hybridization and phase change, suggesting the possibility of environmentally responsive complexes and nanoparticles for therapeutic or sensing applications.


Assuntos
Oligonucleotídeos/química , Peptídeos/química , Humanos , MicroRNAs/química , Tamanho da Partícula
6.
Soft Matter ; 14(13): 2454-2464, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29376531

RESUMO

Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.

7.
Phys Rev Lett ; 119(12): 127801, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341644

RESUMO

Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.

8.
ACS Macro Lett ; 12(2): 195-200, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36695540

RESUMO

We investigate the effect of charge block length on polyampholyte chain conformation and phase behavior using small-angle X-ray scattering (SAXS) and implicit-solvent molecular simulations. To this end, we use solid phase peptide synthesis to precision-tailor a series of polyampholytes consisting of l-glutamic acid (E) and l-lysine (K) monomers arranged in alternating blocks from 2 to 16 monomers. We observe that the polyampholytes tend to phase separate as block size increases. With addition of NaCl, phase separated polyampholytes exhibit a salting-in effect dependent on charge block length. Fourier-transform infrared (FTIR) spectroscopy reveals the presence of intramolecular hydrogen bonds that are disrupted upon the addition of NaCl, implicating both electrostatic interactions and hydrogen bonding in the phase behavior. SAXS spectra at no-added salt conditions show minimal dependence of charge block length on the radius of gyration (Rg) for soluble polyampholytes, but local chain stiffening is found to be dependent on charge block length. With increasing NaCl, consistent with electrostatic screening, all polyampholytes expand and behave as neutral or swollen chains in good solvent conditions. Molecular simulations are qualitatively consistent with experiments. Implications for understanding intracellular condensates and material design are noted.

9.
ACS Nano ; 16(12): 20964-20974, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36413762

RESUMO

Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.

10.
ACS Macro Lett ; 11(7): 854-860, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35758769

RESUMO

We investigate the structure and dynamics of unentangled semidilute solutions of sodium polystyrenesulfonate (NaPSS) using small-angle neutron scattering (SANS) and neutron spin-echo (NSE) spectroscopy. The effects of electrostatic interactions and chain structure are examined as a function of ionic strength and polymer concentration, respectively. The SANS profiles exhibit a characteristic structural peak, signature of polyelectrolyte solutions, that can be fit with a combination of a semiflexible chain with excluded volume interactions form factor and a polymer reference interaction site model (PRISM) structure factor. We confirm that electrostatic interactions vary with ionic strength across solutions with similar geometries. The segmental relaxations from NSE deviate from theoretical predictions from Zimm and exhibit two scaling behaviors, with the crossover between the two regimes taking place around the characteristic structural peak. The chain dynamics are suppressed across the length scale of the correlation blob, and inversely related to the structure factor. These observations suggest that the highly correlated nature of polyelectrolytes presents an additional energy barrier that leads to de Gennes narrowing behavior.


Assuntos
Polímeros , Íons , Polieletrólitos , Polímeros/farmacologia , Espalhamento a Baixo Ângulo , Eletricidade Estática
11.
Nat Mater ; 9(5): 454-60, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20383129

RESUMO

The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A biomimetic approach is to explore the impact of monomer sequence on non-natural polymer structure and function. We present the aqueous self-assembly of two peptoid polymers into extremely thin two-dimensional (2D) crystalline sheets directed by periodic amphiphilicity, electrostatic recognition and aromatic interactions. Peptoids are sequence-specific, oligo-N-substituted glycine polymers designed to mimic the structure and functionality of proteins. Mixing a 1:1 ratio of two oppositely charged peptoid 36mers of a specific sequence in aqueous solution results in the formation of giant, free-floating sheets with only 2.7 nm thickness. Direct visualization of aligned individual peptoid chains in the sheet structure was achieved using aberration-corrected transmission electron microscopy. Specific binding of a protein to ligand-functionalized sheets was also demonstrated. The synthetic flexibility and biocompatibility of peptoids provide a flexible and robust platform for integrating functionality into defined 2D nanostructures.


Assuntos
Biomimética , Glicina/análogos & derivados , Peptoides/química , Polímeros/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Soluções Tampão , Cristalização , Análise de Fourier , Ligantes , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/síntese química , Ligação Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Água/química
12.
Methods Enzymol ; 646: 223-259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453927

RESUMO

Polyelectrolyte complexation is driven by associative interactions between oppositely charged polyelectrolytes, resulting in formation of a macroscopic polymer dense phase and a polymer dilute phase with applications in coatings, adhesives, and purification membranes. Beyond macroscale phase separation, precision polymer synthesis has enabled further development of polyelectrolyte complex (PEC)-based self-assembled micelles and hydrogels with applications in biotechnology. Interestingly, it has been suggested that mechanisms similar to polyelectrolyte complexation drive formation of biological condensates that play an indispensable role in cellular biogenesis. The formation pathways and functionality of these complex materials is dependent on the physical properties that are built into polymer structure and the resulting physical conformation in the dilute and dense phase. Scattering techniques have enabled in situ investigation of structure-function relationships in PEC materials that may address unresolved biophysical questions in cellular processes as well as catalyze the development of novel materials for diverse applications. We describe preparation of PEC materials with controlled polymer characteristics (length, blockiness, charge density), small-angle X-ray scattering (SAXS) techniques employed to probe appropriate length scales, and the data analysis routines from a practical standpoint for new users. This article deals with bulk complexes and not with the related, important and interesting area of non-equilibrium layer-by-layer assembly of polyelectrolytes.


Assuntos
Micelas , Substâncias Macromoleculares , Polieletrólitos , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Adv Mater ; 33(29): e2007176, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34096115

RESUMO

2D perovskites are a class of halide perovskites offering a pathway for realizing efficient and durable optoelectronic devices. However, the broad chemical phase space and lack of understanding of film formation have led to quasi-2D perovskite films with polydispersity in perovskite layer thicknesses, which have hindered device performance and stability. Here, a simple and scalable approach is reported, termed as the "phase-selective method", to fabricate 2D perovskite thin films with homogenous layer thickness (phase purity). The phase-selective method involves the dissolution of single-crystalline powders with a homogeneous perovskite layer thickness in desired solvents to fabricate thin films. In situ characterizations reveal the presence of sub-micrometer-sized seeds in solution that preserve the memory of the dissolved single crystals and dictate the nucleation and growth of grains with an identical thickness of the perovskite layers in thin films. Photovoltaic devices with a p-i-n architecture are fabricated with such films, which yield an efficiency of 17.1% enabled by an open-circuit voltage of 1.20 V, while preserving 97.5% of their peak performance after 800 h under illumination without any external thermal management.

14.
Adv Colloid Interface Sci ; 239: 187-198, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27418294

RESUMO

Polyelectrolyte complexes (PECs) formed using polypeptides have great potential for developing new self-assembled materials, in particular for the development of drug and gene delivery vehicles. This review discusses the latest advancements in PECs formed using polypeptides as the polyanion and/or the polycation in both polyelectrolyte complexes that form bulk materials and block copolymer complexes that form nanoscale assemblies such as PEC micelles and other self-assembled structures. We highlight the importance of secondary structure formation between homogeneous polypeptide complexes, which, unlike PECs formed using other polymers, introduces additional intermolecular interactions in the form of hydrogen bonding, which may influence precipitation over coacervation. However, we still include heterogeneous complexes consisting of polypeptides and other polymers such as nucleic acids, sugars, and other synthetic polyelectrolytes. Special attention is given to complexes formed using nucleic acids as polyanions and polypeptides as polycations and their potential for delivery applications.

15.
ACS Macro Lett ; 4(4): 446-452, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35596311

RESUMO

In this work, we report the synthesis and direct observation of branched DNA polymers using single molecule techniques. Polymer topology plays a major role in determining the properties of advanced materials, yet understanding the dynamics of these complex macromolecules has been challenging. Here, we study the conformational relaxation dynamics of single surface-tethered comb polymers from high stretch in a microfluidic device. Our results show that the molecular topology of individual branched polymers plays a direct role on the relaxation dynamics of polymers with complex architectures. Macromolecular DNA combs are first synthesized using a hybrid enzymatic-synthetic approach, wherein chemically modified DNA branches and DNA backbones are generated in separate polymerase chain reactions, followed by a "graft-onto" reaction via strain-promoted [3 + 2] azide-alkyne cycloaddition. This method allows for the synthesis of branched polymers with nearly monodisperse backbone and branch molecular weights. Single molecule fluorescence microscopy is then used to directly visualize branched polymers, such that the backbone and side branches can be tracked independently using single- or dual-color fluorescence labeling. Using this approach, we characterize the molecular properties of branched polymers, including apparent contour length and branch grafting distributions. Finally, we study the relaxation dynamics of single comb polymers from high stretch following the cessation of fluid flow, and we find that polymer relaxation depends on branch grafting density and position of branch point along the main chain backbone. Overall, this work effectively extends single polymer dynamics to branched polymers, which allows for dynamic, molecular-scale observation of polymers with complex topologies.

16.
J Mol Biol ; 426(13): 2413-21, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24792418

RESUMO

Single-stranded DNA binding proteins (SSBs) selectively bind single-stranded DNA (ssDNA) and facilitate recruitment of additional proteins and enzymes to their sites of action on DNA. SSB can also locally diffuse on ssDNA, which allows it to quickly reposition itself while remaining bound to ssDNA. In this work, we used a hybrid instrument that combines single-molecule fluorescence and force spectroscopy to directly visualize the movement of Escherichia coli SSB on long polymeric ssDNA. Long ssDNA was synthesized without secondary structure that can hinder quantitative analysis of SSB movement. The apparent diffusion coefficient of E. coli SSB thus determined ranged from 70,000 to 170,000nt(2)/s, which is at least 600 times higher than that determined from SSB diffusion on short ssDNA oligomers, and is within the range of values reported for protein diffusion on double-stranded DNA. Our work suggests that SSB can also migrate via a long-range intersegment transfer on long ssDNA. The force dependence of SSB movement on ssDNA further supports this interpretation.


Assuntos
DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sítios de Ligação , DNA Bacteriano/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Difusão , Proteínas de Escherichia coli/química , Microscopia de Fluorescência , Modelos Moleculares , Conformação de Ácido Nucleico , Pinças Ópticas , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas
17.
Adv Mater ; 25(44): 6398-404, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23966206

RESUMO

A microfluidic-based directed assembly strategy is employed to form highly aligned supramolecular structures. Formation of aligned synthetic oligopeptide nanostructures is accomplished using planar extensional flow, which induces alignment of underlying material suprastructures. Fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscales, which has the potential to provide rapid and efficient control of functional material properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA