Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Lasers Med Sci ; 39(1): 109, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649643

RESUMO

Necrosis is common in skin flap surgeries. Photobiomodulation, a noninvasive and effective technique, holds the potential to enhance microcirculation and neovascularization. As such, it has emerged as a viable approach for mitigating the occurrence of skin flap necrosis. The aim of this systematic review was to examine the scientific literature considering the use of photobiomodulation to increase skin-flap viability. The preferred reporting items for systematic reviews and meta-analyses (PRISMA), was used to conducted systematic literature search in the databases PubMed, SCOPUS, Elsevier and, Scielo on June 2023. Included studies investigated skin-flap necrosis employing PBMT irradiation as a treatment and, at least one quantitative measure of skin-flap necrosis in any animal model. Twenty-five studies were selected from 54 original articles that addressed PBMT with low-level laser (LLL) or light-emitting diode (LED) in agreement with the qualifying requirements. Laser parameters varied markedly across studies. In the selected studies, the low-level laser in the visible red spectrum was the most frequently utilized PBMT, although the LED PBMT showed a similar improvement in skin-flap necrosis. Ninety percent of the studies assessing the outcomes of the effects of PBMT reported smaller areas of necrosis in skin flap. Studies have consistently demonstrated the ability of PBMT to improve skin flap viability in animal models. Evidence suggests that PBMT, through enhancing angiogenesis, vascular density, mast cells, and VEGF, is an effective therapy for decrease necrotic tissue in skin flap surgery.


Assuntos
Terapia com Luz de Baixa Intensidade , Necrose , Retalhos Cirúrgicos , Animais , Terapia com Luz de Baixa Intensidade/métodos , Pele/efeitos da radiação , Pele/irrigação sanguínea , Retalhos Cirúrgicos/irrigação sanguínea
2.
Lasers Med Sci ; 37(3): 1583-1592, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34767116

RESUMO

A bone scaffold added to the dental alveolus immediately after an extraction avoids bone atrophy and deformity at the tooth loss site, enabling rehabilitation with implants. Photobiomodulation accelerates bone healing by stimulating blood flow, activating osteoblasts, diminishing osteoclastic activity, and improving the integration of the biomaterial with the bone tissue. The aim of the present study was to evaluate the effect of photobiomodulation with LED at a wavelength of 850 nm on bone quality in Wistar rats submitted to molar extraction with and without a bone graft using hydroxyapatite biomaterial (Straumann® Cerabone®). Forty-eight rats were distributed among five groups (n = 12): basal (no interventions); control (extraction) (basal and control were the same animal, but at different sides); LED (extraction + LED λ = 850 nm); biomaterial (extraction + biomaterial), and biomaterial + LED (extraction + biomaterial + LED λ = 850 nm). Euthanasia occurred at 15 and 30 days after the induction of the extraction. The ALP analysis revealed an improvement in bone formation in the control and biomaterial + LED groups at 15 days (p = 0.0086 and p = 0.0379, Bonferroni). Moreover, the LED group had better bone formation compared to the other groups at 30 days (p = 0.0007, Bonferroni). In the analysis of AcP, all groups had less resorption compared to the basal group. Bone volume increased in the biomaterial, biomaterial + LED, and basal groups in comparison to the control group at 15 days (p < 0.05, t-test). At 30 days, the basal group had greater volume compared to the control and LED groups (p < 0.05, t-test). LED combined with the biomaterial improved bone formation in the histological analysis and diminished bone degeneration (demonstrated by the reduction in AcP), promoting an increase in bone density and volume. LED may be an important therapy to combine with biomaterials to promote bone formation, along with the other known benefits of this therapy, such as the control of pain and the inflammatory process.


Assuntos
Materiais Biocompatíveis , Terapia com Luz de Baixa Intensidade , Animais , Materiais Biocompatíveis/farmacologia , Durapatita , Ratos , Ratos Wistar , Extração Dentária , Alvéolo Dental/patologia
3.
Lasers Med Sci ; 36(5): 965-973, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32812131

RESUMO

Acute lung injury (ALI) is a severe, multifactorial lung pathology characterized by diffuse alveolar injury, inflammatory cell infiltration, alveolar epithelial barrier rupture, alveolar edema, and impaired pulmonary gas exchange, with a high rate of mortality; and sepsis is its most common cause. The mechanisms underlying ALI due to systemic inflammation were investigated experimentally by systemic lipopolysaccharide (LPS) administration. Photobiomodulation (PBM) has been showing good results for several inflammatory diseases, but there are not enough studies to support the real benefits of its use, especially systemically. Considering that ALI is a pathology with high morbidity and mortality, we studied the effect of systemic PBM with red light-emitting diode (LED) (wavelength 660 nm; potency 100 mW; energy density 5 J/cm; total energy 15 J; time 150 s) in the management of inflammatory parameters of this disease. For this, 54 male Wistar rats were submitted to ALI by LPS injection (IP) and treated or not with PBM systemically in the tail 2 and 6 h after LPS injection. Data were analyzed by one-way ANOVA followed by Student's Newman-Keuls. Our results point to the beneficial effects of systemic PBM on the LPS-induced ALI, as it reduced the number of neutrophils recruited into the bronchoalveolar lavage, myeloperoxidase activity, and also reduced interleukins (IL) 1ß, IL-6, and IL-17 in the lung. Even considering the promising results, we highlight the importance of further studies to understand the mechanisms involved, and especially the dosimetry, so that in near future, we can apply this knowledge in clinical practice.


Assuntos
Lesão Pulmonar Aguda/radioterapia , Terapia com Luz de Baixa Intensidade , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Lavagem Broncoalveolar , Progressão da Doença , Interleucinas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
4.
Lasers Med Sci ; 36(7): 1427-1435, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33156476

RESUMO

Photobiomodulation therapy (PBMT) has been indicated for enforcement on healing skin wounds. This study evaluated the effects of PBMT on the healing of skin wounds during the proliferation phase in rats with a hypoproteic diet. Rats were randomized to one of the following groups (n = 10 per group): (i) injured normoproteic (25% protein) not subjected to PBMT; (ii) injured normoproteic who received PBMT; (iii) injured hypoproteic (8% protein) not subjected to PBMT; and (iv) injured hypoproteic who received PBMT. Rats were submitted to skin wounds and then treated with PBMT (low-level laser therapy: 660 nm, 50 mW, 1.07 W/cm2, 0.028 cm2, 72 J/cm2, 2 J). Analyses were performed at 7 and 14 days of follow-up: semi-quantitative histopathologic analysis, collagen type I and III expressions, immunohistochemical marking for matrix metalloproteinases-3 (MMP-3) and (matrix metalloproteinases-9) MMP-9, and mechanical resistance test. There were significant differences between the normoproteic groups and their respective treated groups (p < 0.05), as well as to treated and untreated hypoproteic groups in histopathologic analysis semi-quantitatively and immunohistochemistry for MMP-3 and 9, in which PBMT was able to decrease immunostaining. Moreover, there was a decrease in collagen deposition with the statistical difference (p < 0.05) for both collagen types III and I. In conclusion, PBMT application was proved effective in the treatment of cutaneous wounds in rats submitted to a hypoproteic diet. These alterations were more salient in the proliferation stage with the reduction of metalloproteinases providing better mechanical resistance of the injured area in the remodeling phase with an intensification of type I collagen.


Assuntos
Dieta com Restrição de Proteínas , Terapia com Luz de Baixa Intensidade , Cicatrização , Animais , Proliferação de Células , Dieta , Ratos , Ratos Wistar
5.
Lasers Med Sci ; 34(2): 255-262, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29992491

RESUMO

Physical exercise generates several benefits in a short time in patients with diabetes mellitus. However, it can increase the chances of muscle damage, a serious problem for diabetic patients. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat these injuries, despite the serious adverse effects. In this way, photobiomodulation therapy (PBMT) with low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) can be used as an alternative in this case. However, its efficacy in tissue repair of trauma injuries in diabetes mellitus until now is unknown, as well as the combination between PBMT and NSAIDs. The objective of the present study was to evaluate the effects of NSAIDs and PBMT applied alone or combined on functional and biochemical aspects, in an experimental model of muscle injury through controlled trauma in diabetic rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 3 J; 107.1 J/cm2, 30 s), diclofenac sodium for topical use (1 g), or combination of them. Our results demonstrated that PBMT + diclofenac, and PBMT alone reduced the gene expression of cyclooxygenase-2 (COX-2) at all assessed times as compared to the injury and diclofenac groups (p < 0.05 and p < 0.01 respectively). The diclofenac alone showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). Prostaglandin E2 levels in blood plasma demonstrated similar results to COX2. In addition, we observed that PBMT + diclofenac and PBMT alone showed significant improvement compared with injury and diclofenac groups in functional analysis at all time points. The results indicate that PBMT alone or in combination with diclofenac reduces levels of inflammatory markers and improves gait of diabetic rats in the acute phase of muscle injury.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/radioterapia , Diclofenaco/administração & dosagem , Diclofenaco/uso terapêutico , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Administração Tópica , Animais , Terapia Combinada , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Dinoprostona/sangue , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Ratos Wistar
6.
Toxicol Appl Pharmacol ; 355: 60-67, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29944852

RESUMO

A high incidence of intentional or accidental paraquat (PQ) ingestion is related to irreversible lung fibrosis and no effective therapy is currently available. Vitamin D has emerged with promising results as an immunomodulatory molecule when abrogating the inflammatory responses of lung diseases. Therefore, we have investigated the role of vitamin D treatments on PQ-induced lung fibrosis in male C57/BL6 mice. Lung fibrosis was induced by a single injection of PQ (10 mg/kg; i.p.). The control group received PQ vehicle. Seven days later, after the PQ injection or the vehicle injection, the mice received vitamin D (5 µg/kg, i.p., once a day) or vehicle, for a further 7 days. Twenty-four hours after the last dose of vitamin D or the vehicle, the analysis were performed. The vitamin D treatments reduced the number of leukocytes in their BALF and they decreased the IL-6, IL-17, TGF-beta and MMP-9 levels and the abrogated collagenase deposits in their lung tissues. Conversely, the vitamin D treatments increased the resolvin D levels in their BALF. Moreover, their tracheal contractility was also significantly reduced by the vitamin D treatments. Altogether, the data that was obtained showed a promising use of vitamin D, in treating the lung fibrosis that had been induced by the PQ intoxications. This may improve its prognostic use for a non-invasive and low cost therapy.


Assuntos
Herbicidas/toxicidade , Inflamação/prevenção & controle , Paraquat/antagonistas & inibidores , Paraquat/toxicidade , Edema Pulmonar/prevenção & controle , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Lesão Pulmonar Aguda , Animais , Líquido da Lavagem Broncoalveolar/citologia , Colágeno/biossíntese , Citocinas/metabolismo , Inflamação/induzido quimicamente , Contagem de Leucócitos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos
7.
Lasers Med Sci ; 33(9): 1933-1940, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29909435

RESUMO

When conservative treatments fail, hip osteoarthritis (OA), a chronic degenerative disease characterized by cartilage wear, progressive joint deformity, and loss of function, can result in the need for a total hip arthroplasty (THA). Surgical procedures induced tissue trauma and incite an immune response. Photobiomodulation therapy (PBMt) using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has proven effective in tissue repair by modulating the inflammatory process and promoting pain relief. Therefore, the aim of this study was to analyze the immediate effect of PBMt on inflammation and pain of patients undergoing total hip arthroplasty. The study consisted of 18 post-surgical hip arthroplasty patients divided into two groups (n = 9 each) placebo and active PBMt who received one of the treatments in a period from 8 to 12 h following THA surgery. PBMt (active or placebo) was applied using a device consisting of nine diodes (one super-pulsed laser of 905 nm, four infrared LEDs of 875 nm, and four red LEDs 640 nm, 40.3 J per point) applied to 5 points along the incision. Visual analog scale (VAS) and blood samples for analysis of the levels of the cytokines TNF-α, IL-6, and IL-8 were recorded before and after PBMt application. The values for the visual analog scale as well as those in the analysis of TNF-α and IL-8 serum levels decreased in the active PBMt group compared to placebo-control group (p < 0.05). No decrease was observed for IL-6 levels. We conclude that PBMt is effective in decreasing pain intensity and post-surgery inflammation in patients receiving total hip arthroplasty.


Assuntos
Dor Aguda/radioterapia , Artroplastia de Quadril/efeitos adversos , Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade , Idoso , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Medição da Dor , Placebos , Fator de Necrose Tumoral alfa/metabolismo
8.
Lasers Med Sci ; 33(6): 1215-1223, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29623521

RESUMO

It is well established that laser phototherapy (LP) is contraindicated directly over cancer cells, due to its bio modulatory effects in cell and blood vessel proliferation. The aim of the present study was to analyze the influence of typical low-level laser therapy (LLLT) and high intensity laser therapy (HILT) and an in-between dose of 9 J on collagen fibers and blood vessels content in melanoma tumors (B16F10) implanted in mice. Melanoma tumor cells were injected in male Balb C mice which were distributed in four groups: control (no irradiated) or irradiated by 3, 9, or 21 J (150; 450, or 1050 J/cm2). LP was performed in daily sessions for 3 days with a InGaAlP-660 nm (mean output: 50 mW, spot size: 2 mm2). Tumor volume was analyzed using (1) picrosirius staining to quantify collagen fibers content and (2) Verhoeff's method to quantify blood vessels content. Tumor growth outcome measured in the 3-J group was not significantly different from controls. Nine and 21-J groups, presented significant and dose-dependent increases in tumor volume. Quantitative analysis of the intensity of collagen fibers and their organization in stroma and peri-tumoral microenvironment showed significant differences between irradiated and control group. Blood vessels count of 21-J group outnumbered the other groups. High doses (≥ 9 J) of LP showed a dose-dependent tumor growth, different collagen fibers characteristics, and eventually blood vessel growth, while a typical LLLT dose (3 J) appeared harmless on melanoma cell activity.


Assuntos
Tecido Conjuntivo/patologia , Tecido Conjuntivo/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Melanoma Experimental/patologia , Animais , Proliferação de Células/efeitos da radiação , Colágeno Tipo I/metabolismo , Relação Dose-Resposta à Radiação , Colágenos Fibrilares/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Coloração e Rotulagem , Células Estromais/patologia , Células Estromais/efeitos da radiação , Carga Tumoral/efeitos da radiação
9.
Lasers Med Sci ; 33(4): 755-764, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29209866

RESUMO

This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMD mdx ). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMD mdx ), PBMT with doses of 1 J (DMD mdx ), 3 J (DMD mdx ), and 10 J (DMD mdx ). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks. PBMT was applied on a single point (tibialis anterior muscle-bilaterally). We analyzed functional performance, muscle morphology, and gene and protein expression of dystrophin. PBMT with a 10 J dose significantly improved (p < 0.001) functional performance compared to all other experimental groups. Muscle morphology was improved by all PBMT doses, with better outcomes with the 3 and 10 J doses. Gene expression of dystrophin was significantly increased with 3 J (p < 0.01) and 10 J (p < 0.01) doses when compared to placebo-control group. Regarding protein expression of dystrophin, 3 J (p < 0.001) and 10 J (p < 0.05) doses also significantly showed increase compared to placebo-control group. We conclude that PBMT can mainly preserve muscle morphology and improve muscular function of mdx mice through modulation of gene and protein expression of dystrophin. Furthermore, since PBMT is a non-pharmacological treatment which does not present side effects and is easy to handle, it can be seen as a promising tool for treating Duchenne's muscular dystrophy.


Assuntos
Distrofina/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/radioterapia , Animais , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Placebos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
J Cosmet Laser Ther ; 19(7): 391-396, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28557593

RESUMO

The aim of the present study was to evaluate the effects of low-level laser therapy (LLLT) on the modulation of tissue temperature and hyperalgesia following a partial injury to the Achilles tendon in rats. Forty-five rats were randomly divided into three groups: a control group, a group treated with LLLT at a dose of 1.4 J (808 nm, 50 mW, 1.4 J), and a group treated with LLLT at a dose of 2.1 J (808 nm, 50 mW, 2.1 J). LLLT was administered to a single point immediately following the partial injury of the Achilles tendon. Tissue temperature and hyperalgesia were evaluated 6, 24, and 48 hours following the injury. Thus, a significant group-versus-time interaction was found for tissue temperature (F = 4.097, p = 0.001) and hyperalgesia (F = 106.605, p < 0.001), with a greater reduction in theses outcomes in the group that received LLLT at a dose of 2.1 J evaluated 48 hours after the injury. Therefore, LLLT at a wavelength of 808 nm and dose of 2.1 J administered immediately following a partial injury to the Achilles tendon led to a reduction in tissue temperature and hyperalgesia at the injury site in rats, especially 48 hours after injury.


Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Hiperalgesia/radioterapia , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Temperatura , Animais , Hiperalgesia/etiologia , Ratos , Ratos Wistar , Termografia , Fatores de Tempo
11.
Lasers Med Sci ; 32(9): 2111-2120, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28983756

RESUMO

Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 1 J-35.7 J/cm2, 3 J-107.1 J/cm2, and 9 J-321.4 J/cm2; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm2) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm2) group in relation to the injury group and the diclofenac group (p < 0.05). The results of the present study indicate that PBMT, with a dose of 3 J (107.1 J/cm2), is more effective than the other doses of PBMT tested and NSAIDs for topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Contusões/complicações , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Administração Tópica , Animais , Diclofenaco/farmacologia , Masculino , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Ratos Wistar
12.
Lasers Med Sci ; 32(8): 1879-1887, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795275

RESUMO

Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm2; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm2), 3 J (107.1 J/cm2), and 9 J (321.4 J/cm2) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1ß, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Contusões/tratamento farmacológico , Contusões/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Administração Tópica , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Biomarcadores/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Lasers Med Sci ; 32(1): 87-94, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27726041

RESUMO

The objective of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on inflammatory indicators, i.e., inflammatory mediators (TNF-α and CINC-1), and pain characterized by hyperalgesia and B1 and B2 receptor activation at 6, 24, and 48 h after papain-induced osteoarthritis (OA) in rats. Fifty-four rats were subjected to hyperalgesia evaluations and then divided randomly into three groups-a control group and two groups OA and OA PBMT group by using laser parameters at wavelength (808 nm), output power (50 mW), energy per point (4 Joules), power density (1.78 W/cm2), laser beam (0.028 cm2), and energy density (144 J/cm2)-the induction of osteoarthritis was then performed with 20-µl injections of a 4 % papain solution dissolved in 10 µl of saline solution, to which 10 µl of cysteine solution (0.03 M). The statistical analysis was performed using two-way ANOVA with Bonferroni's post hoc test for comparisons between the 6, 24, and 48 h and team points within each group, and between the control, injury, and PBMT groups, and p < 0.05 was considered to indicate a significant difference. The hyperalgesia was evaluated at 6, 24, and 48 h after the injury. PBMT at a wavelength of 808 nm and doses of 4 J, administered afterward, promotes increase at the threshold of pressure stimulus at 6, 24, and 48 h after application and promote cytokine attenuation levels (TNF and CINC-1) and bradykinin receptor (B1 and B2) along the experimental period. We conclude that photobiomodulation therapy was able to promote the reduction of proinflammatory cytokines such as TNF-α and CINC-1, to reduce the gene and protein expression of the bradykinin receptor (B1 and B2), as well as increasing the stimulus response threshold of pressure in an experimental model of acute osteoarthritis.


Assuntos
Mediadores da Inflamação/metabolismo , Terapia com Luz de Baixa Intensidade , Osteoartrite/metabolismo , Osteoartrite/radioterapia , Receptores da Bradicinina/metabolismo , Doença Aguda , Animais , Quimiocina CXCL1 , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Extremidades/patologia , Regulação da Expressão Gênica , Hiperalgesia/complicações , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Osteoartrite/complicações , Osteoartrite/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
14.
Lasers Med Sci ; 31(6): 1075-81, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27184152

RESUMO

Worldwide, rheumatic fever remains a significant cause of mitral valve insufficiency. It is responsible for approximately 90 % of early childhood valvular surgeries in Brazil. Elongated or flail chordae are frequently responsible and require surgical correction. The purpose of this study was to analyze and compare the histological tissues of the mitral valve chordae and the mechanical resistance generated by the chordae, both with and without the application of a high-power laser. Twenty normal porcine mitral valve chordae were measured and divided randomly into the following two groups: control group (not subjected to a high-power laser) and laser group (subjected to photonic irradiation). Laser surgery was performed under controlled conditions, using following parameters: λ = 980-nm wavelength, power = 3 W, and energy = 60 J. A mechanical test machine was used in combination with a subsequent histological study to measure chordae tensile properties. A histological analysis demonstrated a typical collagen bundle arrangement in the control group; however, under a particular reached temperature range (48), the collagen bundles assumed different arrangements in the laser group. Significant reductions in the chordae tendineae lengths and changes in their resistance in the laser group were observed, as these chordae exhibited less rigid fibers. The chordae tendineae of normal porcine valves subjected to a high-power laser exhibited its length reduction and less stiffness compared to the control group. A histological analysis of the laser treatment specimens demonstrated differences in collagen bundle spatial organization, following slight changes into tissue temperature.


Assuntos
Cordas Tendinosas/cirurgia , Doenças das Valvas Cardíacas/cirurgia , Terapia a Laser/métodos , Valva Mitral , Animais , Colágeno , Luz , Suínos , Temperatura
15.
Lasers Med Sci ; 30(7): 1985-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25380666

RESUMO

Tendinopathy is a common disease with a variety of treatments and therapies. Laser therapy appears as an alternative treatment. Here, we investigate the effects of laser irradiation in an experimental model of tendinitis induced by collagenase injection on rats' Achilles tendon, verifying its action in important inflammatory markers. Male Wistar rats were used and divided into five groups: control saline (C), non-treated tendinitis (NT) and tendinitis treated with sodium diclofenac (D) or laser (1 J) and (3 J). The tendinitis was induced by collagenase (100 µg/tendon) on the Achilles tendon, which was removed for further analyses. The gene expression for COX-2; TNF-α; IL-6; and IL-10 (RT-PCR) was measured. The laser irradiation (660 nm, 100 mW, 3 J) used in the treatment of the tendinitis induced by collagenase in Achilles tendon in rats was effective in the reduction of important pro-inflammatory markers such as IL-6 and TNF-α, becoming a promising tool for the treatment of tendon diseases.


Assuntos
Tendão do Calcâneo/efeitos da radiação , Expressão Gênica/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Tendinopatia/radioterapia , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Colagenases , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/uso terapêutico , Modelos Animais de Doenças , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratos , Ratos Wistar , Tendinopatia/induzido quimicamente , Tendinopatia/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Lasers Med Sci ; 30(5): 1575-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987340

RESUMO

From the very first reports describing the method of action of phototherapy, the effects have been considered to be the result of photochemical and photophysical interactions between the absorbed photons and tissue and not related to secondary changes in tissue or skin temperature. However, thermal effects have been recently reported in dark pigmented skin when irradiated with single wavelengths of 810 and 904 nm of low-level laser therapy (LLLT) devices even with doses that do not exceed those recommended by the World Association of Laser Therapy (WALT). The aim of this study was to evaluate the thermal impact during the concurrent use of pulsed red and infrared LEDs and super-pulsed lasers when applied to light, medium, and dark pigmented human skin with doses typically seen in clinical practice. The study evaluated the skin temperature of 42 healthy volunteers (males and females 18 years or older, who presented different pigmentations, stratified according to Von Luschan's chromatic scale) via the use of a thermographic camera. Active irradiation was performed with using the multi-diode phototherapy cluster containing four 905-nm super-pulsed laser diodes (frequency set to 250 Hz), four 875-nm infrared-emitting diodes, and four 640-nm LEDs (manufactured by Multi Radiance Medical™, Solon, OH, USA). Each of the four doses were tested on each subject: placebo, 0 J (60 s); 10 J (76 s); 30 J (228 s); and 50 J (380 s). Data were collected during the last 5 s of each dose of irradiation and continued for 1 min after the end of each irradiation. No significant skin temperature increases were observed among the different skin color groups (p > 0.05), age groups (p > 0.05), or gender groups (p > 0.05). Our results indicate that the concurrent use of super-pulsed lasers and pulsed red and infrared LEDs can be utilized in patients with all types of skin pigmentation without concern over safety or excessive tissue heating. Additionally, the doses and device utilized in present study have demonstrated positive outcomes in prior clinical trials. Therefore, it can be concluded that the effects seen by the concurrent use of multiple wavelengths and light sources were the result of desirable photobiomodulation effect and not related to thermal influence.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Pigmentação da Pele , Temperatura Cutânea/efeitos da radiação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Lasers Med Sci ; 30(1): 59-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24957189

RESUMO

Modulation of cytochrome c oxidase activity has been pointed as a possible key mechanism for low-level laser therapy (LLLT) in unhealthy biological tissues. But recent studies by our research group with LLLT in healthy muscles before exercise found delayed skeletal muscle fatigue development and improved biochemical status in muscle tissue. Therefore, the aim of this study was to evaluate effects of different LLLT doses and wavelengths in cytochrome c oxidase activity in intact skeletal muscle. In this animal experiment, we irradiated the tibialis anterior muscle of rats with three different LLLT doses (1, 3, and 10 J) and wavelengths (660, 830, and 905 nm) with 50 mW power output. After irradiation, the analyses of cytochrome c oxidase expression by immunohistochemistry were analyzed at 5, 10, 30 min and at 1, 2, 12, and 24 h. Our results show that LLLT increased (p < 0.05) cytochrome c oxidase expression mainly with the following wavelengths and doses: 660 nm with 1 J, 830 nm with 3 J, and 905 nm with 1 J at all time points. We conclude that LLLT can increase cytochrome c oxidase activity in intact skeletal muscle and that it contributes to our understanding of how LLLT can enhance performance and protect skeletal muscles against fatigue development and tissue damage. Our findings also lead us to think that the combined use of different wavelengths at the same time can enhance LLLT effects in skeletal muscle performance and other conditions, and it can represent a therapeutic advantage in clinical settings.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/enzimologia , Músculo Esquelético/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/efeitos da radiação , Ratos Wistar
18.
Lasers Med Sci ; 29(3): 1075-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24186775

RESUMO

The aim of this study was to investigate the effect of low-intensity laser (LILT) infrared (830 nm) therapy in tendon inflammation, tendinitis induced by mechanical trauma in rat Achilles tendon. For this, we used 65 young male Wistar rats, weighing ± 300 g divided into different groups: C = control (n = 5) and experimental (n = 10/group), with two different times of sacrifice such as treated with L = laser, D = treated with diclofenac, and T = untreated injured. The tendon inflammation was induced by controlled contusion in the medial region of the Achilles tendon of the animals. The treated groups received some kind of intervention every 24 h, all groups were sacrificed on the 7th or 14th day after the trauma. The tendons were dissected, extracted, and sent for analysis. Histological analysis of the L group showed a decrease in the number of inflammatory cells in relation to other groups in both periods studied. The comparative results between the number of inflammatory cells in the control and treated groups at 7 and 14 days showed statistically significant differences. Qualitative analysis findings obtained by the picrosirius red technique under polarized light showed that in 7 days, the T group presented collagen types I and III in the same proportion; group D presented a predominance of type III fibers, while in group L, type I collagen predominated. The 14-day group D showed collagen types I and III in the same proportion, while in group L, there was a predominance of type I fibers. Biomechanical analysis showed that 7-day groups L and C showed similar stiffness and increased breaking strength. The 14-day groups L and C showed greater rupturing strength as well as increased stiffness angle. Group D showed a decrease of maximum traction strength and degree of rigidity. It was concluded that treatment with LIL in the parameters used and the times studied reduces migration of inflammatory cells and improves the quality of repair while reducing the functional limitations.


Assuntos
Terapia com Luz de Baixa Intensidade , Tendinopatia/radioterapia , Traumatismos dos Tendões/radioterapia , Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Tendão do Calcâneo/efeitos da radiação , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Fenômenos Biomecânicos , Colágeno Tipo I/metabolismo , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Masculino , Ratos Wistar , Tendinopatia/imunologia , Traumatismos dos Tendões/imunologia , Cicatrização/efeitos da radiação
19.
Lasers Med Sci ; 29(2): 653-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23812849

RESUMO

Currently, treatment of muscle injuries represents a challenge in clinical practice. In acute phase, the most employed therapies are cryotherapy and nonsteroidal anti-inflammatory drugs. In the last years, low-level laser therapy (LLLT) has becoming a promising therapeutic agent; however, its effects are not fully known. The aim of this study was to analyze the effects of sodium diclofenac (topical application), cryotherapy, and LLLT on pro-inflammatory cytokine levels after a controlled model of muscle injury. For such, we performed a single trauma in tibialis anterior muscle of rats. After 1 h, animals were treated with sodium diclofenac (11.6 mg/g of solution), cryotherapy (20 min), or LLLT (904 nm; superpulsed; 700 Hz; 60 mW mean output power; 1.67 W/cm(2); 1, 3, 6 or 9 J; 17, 50, 100 or 150 s). Assessment of interleukin-1ß and interleukin-6 (IL-1ß and IL-6) and tumor necrosis factor-alpha (TNF-α) levels was performed at 6 h after trauma employing enzyme-linked immunosorbent assay method. LLLT with 1 J dose significantly decreased (p < 0.05) IL-1ß, IL-6, and TNF-α levels compared to non-treated injured group as well as diclofenac and cryotherapy groups. On the other hand, treatment with diclofenac and cryotherapy does not decrease pro-inflammatory cytokine levels compared to the non-treated injured group. Therefore, we can conclude that 904 nm LLLT with 1 J dose has better effects than topical application of diclofenac or cryotherapy in acute inflammatory phase after muscle trauma.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Crioterapia/métodos , Citocinas/metabolismo , Diclofenaco/farmacologia , Inflamação/metabolismo , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/lesões , Administração Tópica , Animais , Diclofenaco/administração & dosagem , Inflamação/prevenção & controle , Inflamação/terapia , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/fisiopatologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
20.
Lasers Med Sci ; 29(5): 1617-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24651950

RESUMO

This study aimed to evaluate the effects of low-level laser therapy (LLLT) immediately before tetanic contractions in skeletal muscle fatigue development and possible tissue damage. Male Wistar rats were divided into two control groups and nine active LLLT groups receiving one of three different laser doses (1, 3, and 10 J) with three different wavelengths (660, 830, and 905 nm) before six tetanic contractions induced by electrical stimulation. Skeletal muscle fatigue development was defined by the percentage (%) of the initial force of each contraction and time until 50 % decay of initial force, while total work was calculated for all six contractions combined. Blood and muscle samples were taken immediately after the sixth contraction. Several LLLT doses showed some positive effects on peak force and time to decay for one or more contractions, but in terms of total work, only 3 J/660 nm and 1 J/905 nm wavelengths prevented significantly (p < 0.05) the development of skeletal muscle fatigue. All doses with wavelengths of 905 nm but only the dose of 1 J with 660 nm wavelength decreased creatine kinase (CK) activity (p < 0.05). Qualitative assessment of morphology revealed lesser tissue damage in most LLLT-treated groups, with doses of 1-3 J/660 nm and 1, 3, and 10 J/905 nm providing the best results. Optimal doses of LLLT significantly delayed the development skeletal muscle performance and protected skeletal muscle tissue against damage. Our findings also demonstrate that optimal doses are partly wavelength specific and, consequently, must be differentiated to obtain optimal effects on development of skeletal muscle fatigue and tissue preservation. Our findings also lead us to think that the combined use of wavelengths at the same time can represent a therapeutic advantage in clinical settings.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Contração Muscular/efeitos da radiação , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Tetania/fisiopatologia , Tetania/terapia , Animais , Fenômenos Biomecânicos/efeitos da radiação , Creatina Quinase/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Masculino , Músculo Esquelético/fisiopatologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA