Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 106: 57-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26300076

RESUMO

A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio/química , Nêutrons
2.
Appl Radiat Isot ; 88: 238-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24387907

RESUMO

A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Lítio/efeitos da radiação , Modelos Estatísticos , Nêutrons , Aceleradores de Partículas/instrumentação , Radioterapia de Alta Energia/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Isótopos/química , Isótopos/efeitos da radiação , Lítio/química , Radiometria , Dosagem Radioterapêutica , Radioterapia de Alta Energia/métodos , Espalhamento de Radiação , Soluções
3.
Rev Sci Instrum ; 85(5): 056105, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880430

RESUMO

The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (~2 × 10(10) n/s having a peak energy of ~27 keV) from the (7)Li(p,n)(7)Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

4.
Rev Sci Instrum ; 84(12): 123507, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387433

RESUMO

A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the (7)Li(p,n)(7)Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm(3)) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the (7)Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ~200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm(2) and volume power density of ~2 MW/cm(3) at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

5.
Phys Rev D Part Fields ; 44(3): 878-886, 1991 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10013942
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA