Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 100(6): 2807-2811, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975414

RESUMO

BACKGROUND: Pickering emulsions are known to have advantages over conventional emulsions, in particular, improved and long-term stability against coalescence. This research is an eight-year stability investigation of oil-in-water Pickering emulsions stabilized by quinoa starch granules modified by octenyl succinic anhydride (OSA). Two different concentrations of starch (i.e. 200 and 600 mg mL-1 based on oil) were used at oil fraction (ϕ) of 0.1. The emulsions were prepared using a high-pressure homogenizer. The emulsions were stored in a refrigerator (at 6 °C) and evaluated using particle size analyzer over the storage period and light microscopy at the end of the storage period. RESULTS: Starch granule stabilized Pickering emulsions produced by a high-pressure homogenizer displayed remarkable storage stability over the eight years with no indication of coalescence. In addition, the results showed that increasing the concentration of starch granules resulted in a decrease in droplet sizes. The sizes measured by the particle size analyzer showed a decline over the storage period which was due to dissociation of some networks of aggregated droplets that, in addition to representing smaller droplet sizes, resulted in the release of free and unbound starch entrapped in these networks. CONCLUSIONS: This study showed that Pickering emulsions produced by OSA modified starch granules from quinoa can be used in practical applications for the development of highly stable formulations when prolonged storage is required. © 2020 Society of Chemical Industry.


Assuntos
Emulsificantes/química , Emulsões , Amido/análogos & derivados , Chenopodium quinoa , Estudos Longitudinais , Tamanho da Partícula , Amido/química , Triglicerídeos/química , Água/química
2.
Foods ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002127

RESUMO

The issue of the short microbiological shelf life of residues from the plant-based beverage industry creates a large food waste problem. Today, the oat beverage residue, in this study referred to as oat okara, is generally converted to energy or used as animal feed. High-pressure pasteurization (200 MPa, 400 MPa, and 600 MPa) was applied to oat okara to investigate the effect on shelf life and microbiological activity. A 4-week microbiological storage study was performed and thermal properties, viscosity, and water and oil holding capacities were analyzed. The total aerobic count, including yeast and mold, was significantly reduced (p < 0.05) by 600 MPa after four weeks of storage at 4 °C. The content of lactic acid bacteria after four weeks of storage was low for untreated oat okara (3.2 log CFU/g) but, for 600 MPa, the content remained at the detection limit (2.3 log CFU/g). Conversely, the treatments of 200 MPa and 400 MPa increased the microbial content of the total aerobic count significantly (p < 0.05) after two weeks in comparison to untreated oat okara. The thermal properties of untreated and high-pressure-treated oat okara demonstrated an increase in protein denaturation of the 12S globulin, avenalin, when higher pressure was applied (400-600 MPa). This was also confirmed in the viscosity measurements where a viscosity peak for avenalin was only present for untreated and 200 MPa treated oat okara. The water holding capacity did not change as a function of high-pressure treatment (3.5-3.8 mL/g) except for the treatment at 200 MPa, which was reduced (2.7 mL/g). The oil holding capacity was constant (1.2-1.3 mL/g) after all treatments. High-pressure pasteurization of 600 MPa reduced the microbial content in oat okara resulting in a shelf life of 2-4 weeks. However, more research is required to identify the microorganisms in oat okara to achieve a microbiologically safe product that can be used for food applications.

3.
Foods ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37893629

RESUMO

Okara is a by-product from the production of soy beverages, which has a high content of protein and fiber. Even though it has a high nutritional value, it is generally discarded or used as animal feed or compost. The problem is its short shelf life due to its high water content and high water activity. The aim of this study was to investigate the effect of high-pressure pasteurization at 200 MPa, 400 MPa, and 600 MPa on the shelf life of soy okara. Microbiological growth, as well as thermal properties, viscosity, water holding capacity, and oil holding capacity, was evaluated after the pressure treatments. Treatment at 600 MPa significantly reduced (p < 0.05) the growth of total aerobic count, yeast and mold, and lactic acid bacteria for up to four weeks of storage at 4 °C. The pasting properties were increased while the water and oil holding capacities of the soy okara did not significantly change (p > 0.05) after high-pressure pasteurization at 400 MPa and 600 MPa. High-pressure pasteurization is therefore a potential application technique for soy okara to produce a microbiologically safe product with maintained functional properties. However, more research is needed to optimize the process and to further investigate the microbiological species present in untreated soy okara to exclude any potential food safety risks.

4.
Food Chem ; 372: 131354, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34656912

RESUMO

Medium and high internal phase W1/O/W2 multiple Pickering emulsions (MPEs) were fabricated by physically-modified hordein nanoparticles. A triphasic system was developed at dispersed phase volume fraction (Φ) of 0.5 with an overrun value of ∼40%. No overrun was detected in high internal phase MPEs (Φ 0.8). Optical and confocal laser scanning microscopy confirmed the formation of MPEs. Monomodal droplet size distribution with a mean diameter of 32.90 and 21.48 µm was observed for MPEs at Φ 0.5 and Φ 0.8, respectively. Static multiple light scattering confirmed that creaming was the main mechanism behind the instability of MPEs. Both MPEs revealed pseudo-plastic behavior and predominant storage modulus (G') over the applied frequency range. The encapsulation efficiency of vitamin B12 in MPEs was 98.3% and remained relatively constant during 28 d. These results suggested the excellent potential of hordein nanoparticles as appropriate candidate for designing multi-structural colloidal systems using plant proteins.


Assuntos
Glutens , Nanopartículas , Emulsões , Tamanho da Partícula
5.
Foods ; 10(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34359527

RESUMO

Rapeseed press cake (RPC), the by-product of rapeseed oil production, contains proteins with emulsifying properties, which can be used in food applications. Proteins from industrially produced RPC were extracted at pH 10.5 and precipitated at pH 3 (RPP3) and 6.5 (RPP6.5). Emulsions were formulated at three different pHs (pH 3, 4.5, and 6) with soy lecithin as control, and were stored for six months at either 4 °C or 30 °C. Zeta potential and droplet size distribution were analyzed prior to incubation, and emulsion stability was assessed over time by a Turbiscan instrument. Soy lecithin had significantly larger zeta potential (-49 mV to 66 mV) than rapeseed protein (-19 mV to 20 mV). Rapeseed protein stabilized emulsions with smaller droplets at pH close to neutral, whereas soy lecithin was more efficient at lower pHs. Emulsions stabilized by rapeseed protein had higher stability during storage compared to emulsions prepared by soy lecithin. Precipitation pH during the protein extraction process had a strong impact on the emulsion stability. RPP3 stabilized emulsions with higher stability in pHs close to neutral, whereas the opposite was found for RPP6.5, which stabilized more stable emulsions in acidic conditions. Rapeseed proteins recovered from cold-pressed RPC could be a suitable natural emulsifier and precipitation pH can be used to monitor the stability in emulsions with different pHs.

6.
Foods ; 9(1)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940907

RESUMO

Rice and quinoa starch esters were prepared by acylation using short-chain fatty acid anhydrides with different chain lengths (acetic, propionic, and butyric anhydride). A direct stoichiometric method based on the acylation reaction was used to determine the degree of substitution (DS) and acyl content (AC). In addition, Fourier-transform infrared spectroscopy (FTIR) was used to validate the conformational changes of acylated starch and 1H-NMR was used as a DS reference method. DS by stoichiometric calculation was shown to be in agreement with FTIR and was comparable with DS obtained from Proton nuclear magnetic resonance (1H-NMR). Based on this study, stoichiometric calculation allows rapid and direct determination of substitution levels and acyl content without the loss of samples, which provides efficiency and optimization of manufacturing procedures in producing the desired level of esterified starches.

7.
Pharmaceutics ; 11(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813323

RESUMO

The primary focus of this review is a discussion regarding in vitro media for colon release, but we also give a brief overview of colon delivery and the colon microbiota as a baseline for this discussion. The large intestine is colonized by a vast number of bacteria, approximately 1012 per gram of intestinal content. The microbial community in the colon is complex and there is still much that is unknown about its composition and the activity of the microbiome. However, it is evident that this complex microbiota will affect the release from oral formulations targeting the colon. This includes the release of active drug substances, food supplements, and live microorganisms, such as probiotic bacteria and bacteria used for microbiota transplantations. Currently, there are no standardized colon release media, but researchers employ in vitro models representing the colon ranging from reasonable simple systems with adjusted pH with or without key enzymes to the use of fecal samples. In this review, we present the pros and cons for different existing in vitro models. Furthermore, we summarize the current knowledge of the colonic microbiota composition which is of importance to the fermentation capacity of carbohydrates and suggest a strategy to choose bacteria for a new more standardized in vitro dissolution medium for the colon.

8.
Front Chem ; 6: 139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868551

RESUMO

Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

9.
Carbohydr Polym ; 169: 127-138, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504128

RESUMO

The aim of this study is to understand mixed systems of two types of particles with different size and shape, quinoa starch granules (NQ) and cellulose nanocrystals (CNC), to stabilize oil-in-water (O/W) emulsions. This study considers the extent of Pickering stabilization with respect to which particle type dominates at droplet interfaces and how stability is affected by the addition of one particle type to already formed emulsions, or combining both, simultaneously. Results demonstrate that the order of addition has an influence allowing to predominantly have NQ particles at the interface when both types are added simultaneously. However when CNC is added first, both types are responsible for emulsion stabilization leading to a system with an intermediate droplet size yet with a higher stability compared to single particle formulations. A dual stabilization mechanism is observed, large particles prevent coalescence and small particles regulate the curvature of the interface and govern the droplet size.


Assuntos
Chenopodium quinoa/química , Emulsões , Tamanho da Partícula , Polissacarídeos/química , Celulose , Nanopartículas
10.
PLoS One ; 11(8): e0160140, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479315

RESUMO

The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w) oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable.


Assuntos
Emulsificantes/química , Emulsões/química , Amido/análogos & derivados , Anidridos Succínicos/química , Cinética , Microscopia , Óleos/química , Tamanho da Partícula , Amido/química
11.
Food Res Int ; 75: 41-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28454971

RESUMO

Octenyl succinate starches are commonly used as emulsifiers and texturizing agents in many food-systems. Rice, tapioca, corn, wheat and potato starches were modified with octenyl succinic anhydride (OSA) at 3% level. Structural characterization, molecular weight, starch digestibility and physical properties of starch granule stabilized emulsions were studied for modified starches. Modified potato (0.022) and wheat (0.018) starches had the highest and lowest degrees of OSA substitution, respectively. For all starches, amylose and amylopectin molecular mass was significantly (P<0.05) lower for OSA starches. OSA modification may have hydrolyzed the small amylose and amylopectin chains, or caused rearrangement of the starch molecules. Although the starch modification improved emulsification properties, botanical source showed more influence on this parameter. Overall, botanical source had more influence on functional properties than degree of substitution. Further studies on OSA group distribution and fine molecular structure of amylopectin and relationship with functional properties will be important.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA