Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37496205

RESUMO

The main goal of this study was to examine the efficiency of a newly isolated fungus from quince, Aspergillus tubingensis FAT43, to produce the pectinolytic complex using agricultural and industrial waste as the substrate for solid state fermentation. Sugar beet pulp was the most effective substrate inducer of pectinolytic complex synthesis out of all the waste residues examined. For endo-pectinolytic and total pectinolytic activity, respectively, statistical optimization using Placked-Burman Design and Optimal (Custom) Design increased production by 2.22 and 2.15-fold, respectively. Liquification, clarification, and an increase in the amount of reducing sugar in fruit juices (apple, banana, apricot, orange, and quince) processed with pectinolytic complex were identified. Enzymatic pre-treatment considerably increases yield (14%-22%) and clarification (90%). After enzymatic treatment, the best liquefaction was observed in orange juice, whereas the best clarification was obtained in apricot juice. Additionally, the pectinolytic treatment of apricot juice resulted in the highest increase in reducing sugar concentration (11%) compared to all other enzymatically treated juices. Optimizing the production of a highly active pectinolytic complex and its efficient utilization in the processing of fruit juices, including the generation of an increasing amount of waste, are the significant outcomes of this research.


Assuntos
Sucos de Frutas e Vegetais , Poligalacturonase , Fermentação , Poligalacturonase/química , Poligalacturonase/metabolismo , Açúcares
2.
Biometals ; 35(4): 813-829, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708875

RESUMO

The interaction of four arene ruthenium complexes [(η6-p-cymene)Ru(Me2dppz)Cl]PF6 (1) with Me2dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine, [(η6-p-cymene)Ru(aip)Cl]PF6 (2) with aip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10] phenanthroline), ([(ƞ6-toluene)Ru(ppf)Cl]PF6) (3) and ([(ƞ6-p-cymene)Ru(ppf)Cl]PF6) (4) with ppf = pyrido[2',3':5,6] pyrazino[2,3-f][1,10]phenanthroline with calf thymus DNA were investigated. All of four complexes exhibit DNA-binding activity. UV-Vis spectroscopic studies revealed the intrinsic binding constants of the order 104 M-1 of magnitude, indicating non-intercalative mode. Fluorescence quenching analysis showed that all complexes interfere with intercalator ethidium bromide and minor groove binder Hoechst 33258 by a singular non-intercalative mode with extent that differs by two orders of magnitude. Gel electrophoresis results on DNA cleavage assay demonstrated that all complexes produced conformational changes of supercoiled circular plasmid pUC19 in concentration dependent way. The results of fluorescence titration bovine serum albumin by 1, 2, 3 and 4 showed that all complexes significantly quench tryptophan residues fluorescence through a static quenching mechanism. The antimicrobial activity against both Gram-positive and Gram-negative bacteria analyzed. Complex 1 was most active, even on Escherichia coli was more active than positive control compound.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antibacterianos , Antineoplásicos/química , Complexos de Coordenação/química , DNA/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fenantrolinas/química , Rutênio/química
3.
Prep Biochem Biotechnol ; 47(3): 305-311, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-27737610

RESUMO

Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8 M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22 hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.


Assuntos
Parede Celular/enzimologia , Saccharomyces cerevisiae/enzimologia , beta-Frutofuranosidase/química , Parede Celular/química , Estabilidade Enzimática , Cinética , Metanol/química , Desnaturação Proteica , Saccharomyces cerevisiae/química , Solubilidade , Temperatura , Ureia/química
4.
Biochim Biophys Acta ; 1838(11): 2767-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25051529

RESUMO

GCAPs are neuronal Ca(2+)-sensors playing a central role in light adaptation. GCAPs are N-terminally myristoylated membrane-associated proteins. Although, the myristoylation of GCAPs plays an important role in light adaptation its structural and physiological roles are not yet clearly understood. The crystal-structure of GCAP-1 shows the myristoyl moiety inside the hydrophobic core of the protein, stabilizing the protein structure; but (2)H-solid-state NMR investigations on the deuterated myristoyl moiety of GCAP-2 in the presence of liposomes showed that it is inserted into the lipid bilayer. In this study, we address the question of the localization of the myristoyl group of Ca(2+)-bound GCAP-2, and the influence of CHAPS-, DPC-micelles and DMPC/DHPC-bicelles on the structure, and on the localization of the myristoyl group, of GCAP-2 by solution-state NMR. We also carried out the backbone assignment. Characteristic chemical shift differences have been observed between the myristoylated and the non-myristoylated forms of the protein. Our results support the view that in the absence of membrane forming substances the myristoyl moiety is buried inside a hydrophobic pocket of GCAP-2 similar to the crystal structure of GCAP-1. Addition of CHAPS-micelles and DMPC/DHPC-bicelles cause specific structural changes localized in and around the myristoyl binding pocket. We interpret these changes as an indication for the extrusion of the myristoyl moiety from its binding pocket and its insertion into the hydrophobic interior of the membrane mimic. On the basis of the backbone chemical shifts, we propose a structural model of myristoylated GCAP-2 in the presence of Ca(2+) and membrane mimetics.

5.
Food Chem ; 456: 140030, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38909459

RESUMO

Microbial pectinolytic enzymes are important in various industries, particularly food processing. This study focuses on uncovering insights into a novel pectin lyase, BvPelB, from Bacillus velezensis 16B, with the aim of enhancing fruit juice processing. The study examines the structural and functional characteristics of pectinolytic enzyme, underscoring the critical nature of substrate specificity and enzymatic reaction mechanisms. BvPelB was successfully expressed and purified, exhibiting robust activity under alkaline conditions and thermal stability. Structural analysis revealed similarities with other pectin lyases, despite limited sequence identity. Biochemical characterization showed BvPelB's preference for highly methylated pectins and its endo-acting mode of cleavage. Treatment with BvPelB significantly increased juice yield and clarity without generating excessive methanol, making it a promising candidate for fruit juice processing. Overall, this study provides valuable insights into the enzymatic properties of BvPelB and its potential industrial applications in improving fruit juice processing efficiency and quality.


Assuntos
Bacillus , Proteínas de Bactérias , Manipulação de Alimentos , Sucos de Frutas e Vegetais , Polissacarídeo-Liases , Bacillus/enzimologia , Bacillus/química , Sucos de Frutas e Vegetais/análise , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Especificidade por Substrato , Estabilidade Enzimática , Pectinas/metabolismo , Pectinas/química , Frutas/química , Frutas/enzimologia , Frutas/microbiologia
6.
Food Funct ; 15(6): 2906-2919, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38385285

RESUMO

This study focuses on the isolation, purification, and characterisation of endo-polygalacturonase II from Aspergillus tubingensis FAT43, particularly emphasising its potential applications in the fruit juice industry. A comprehensive screening test revealed the temporal dynamics of endo-polygalacturonase production during a 96-hour fermentation process. The purification process, involving ammonium sulfate and ethanol precipitation followed by ion-exchange chromatography, resulted in a 3.3-fold purification of PG II with a yield of 16% and a specific activity of 6001.67 U mg-1. Molecular analysis confirmed the identity of PG II, its gene (pgaII), and a high degree of sequence identity with Aspergillus tubingensis in the SWISS-PROT database. The optimal pH for PG II activity was 3.5-4.5, with robust stability across a broad pH spectrum (3-7). The enzyme exhibited optimal temperature activity at 45 °C, with a retention of 90% activity at 50 °C. The calculated activation energy for PG II was 62.1 kJ mol-1, indicating good stability. Inactivation kinetics revealed a half-life of 13.7 h at 40 °C, 5.4 h at 50 °C, and 0.85 h at 60 °C, with an activation energy of denaturation of 32.8 kJ mol-1. Compared to literature-reported PGs, PG II from A. tubingensis FAT43 demonstrated superior thermal stability. Hydrolysis experiments on different pectins revealed the highest specificity for non-methylated substrates (polygalacturonic acid). In fruit juice processing, PG II significantly increased juice yield and clarity, with the highest impact observed in strawberry juice. Antioxidant activity assays indicated enhanced antioxidant potential in enzyme-treated juices, especially strawberry, quince, and apple juices. The study highlights PG II's potential as an industrially valuable enzyme for fruit juice processing, offering improved thermostability and versatility across various fruit types.

7.
Int J Biol Macromol ; 249: 126055, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37524287

RESUMO

α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60-80 °C and is active and stable over a wide pH range (4.0-9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.


Assuntos
Anoxybacillus , alfa-Amilases , alfa-Amilases/química , Concentração de Íons de Hidrogênio , Hidrólise , Amido/química
8.
Food Res Int ; 160: 111755, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076427

RESUMO

Production of fructooligosaccharides (FOS) is a trending topic due to their prebiotic effect becoming increasingly important for the modern human diet. The most suitable process for FOS production is the one using fungal inulinases. Introduction of new fungal inulinase producers and their implementation in production of inulinase enzymes is therefore gaining interest. This study provides a new approach to FOS synthesis by fungal enzyme complex without prior separation of any specific enzyme. Inulinase enzyme complexes could be used for the synthesis of FOS in two possible ways - hydrolysis of inulin (FOSh) and transfructosylation process of sucrose (FOSs), as demonstrated here. Depending on the fungal growth inducing substrate, a variety of inulinase enzyme complexes was obtained - one of which was most successful in production of FOSh and another one of FOSs. Substrates derived from crops: triticale, wheat bran, Jerusalem artichoke and Aspergillus welwitschiae isolate, previously proven as safe for use in food, were utilized for production of inulinase enzyme cocktails. The highest FOSs production was obtained by enzyme complex rich in ß-fructofuranosidase, while the highest FOSh production was obtained by enzyme complex rich in endoinulinase. Both FOSh and FOSs showed antioxidant potential according to ABTS and ORAC, which classifies them as a suitable additive in functional food. Simultaneous zymographic detection of inulinase enzymes, which could contribute to expansion of the knowledge on fungal enzymes, was developed and applied here. It demonstrated the presence of different inulinase isoforms depending on fungal growth substrate. These findings, which rely on the innate ability of fungi to co-produce all inulinases from a cocktail, could be useful as a new, easy approach to FOS production by fungal enzymes without their separation and purification, contributing to cheaper and faster production processes.


Assuntos
Helianthus , Aspergillus , Glicosídeo Hidrolases , Humanos , Oligossacarídeos
9.
Comp Biochem Physiol B Biochem Mol Biol ; 164(4): 259-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402787

RESUMO

The influence of diet composition--two substrates, wheat bran and sawdust--on isoform expression of digestive enzymes (cellulase, amylase and peptidase) in the midgut of Morimus funereus larvae was examined. Their impact on larval development was demonstrated by measuring the increase of larval weight during development and by analysis of digestive enzymes zymographic profiles, where the expression of cellulase isoforms from M. funereus larvae midgut has been examined for the first time in this study. Larvae reared on wheat bran had higher body weight between day 60 and day 100 than larvae reared on sawdust; however, both groups achieved similar body weight after day 110. Wheat bran as substrate induced different cellulase and amylase isoforms. Oak sawdust in substrate acted as inducer of peptidases. The highest cellulase activity and the greatest isoform variability were detected in the midgut extracts of larvae reared on wheat bran. From our results it can be assumed that M. funereus endocellulase, amylase and peptidase are secreted in the anterior midgut, and their concentration gradually decreases towards the hindgut.


Assuntos
Amilases/metabolismo , Celulase/metabolismo , Besouros/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Besouros/crescimento & desenvolvimento , Dieta , Sistema Digestório/enzimologia , Alimentos , Isoenzimas/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA