Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612061

RESUMO

In recent decades, batch hot-dip galvanized (HDG) steel has proven itself in practical applications due to the good corrosion resistance of its components. Despite the importance of the mechanical-load-bearing capacity of these coatings, the wear behavior has, so far, only been investigated very sporadically and not systematically, so a quantification of the wear behavior and statements on the mechanisms are vague. Therefore, two body wear tests with bonded abrasive grain were carried out. Varying the friction rolls, load, and total number of cycles, the wear behavior was investigated. The mass loss and the layer thickness reduction were measured at different intervals. After the test, the microstructure in the cross-section and the hardness according to Vickers (0.01 HV) were evaluated. The results showed that the wear behavior of HDG coatings against abrasive loads can be characterized with the selected test conditions. Initially, the applied load removed the soft η-phase. As the total number of cycles increases, the η- and ζ-phases deform plastically, resulting in a lower mass reduction compared to that expected from the measured layer thickness. The characteristic structure of a batch HDG coating with hard intermetallic Zn-Fe phases and an outer pure zinc phase has demonstrated effective resistance to abrasion.

2.
Materials (Basel) ; 17(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255626

RESUMO

Coating efficiency and quality can be significantly improved by carefully optimizing the coating parameters. Particularly in the flame spray method, the oxygen/fuel ratio, which is classified as oxidizing flame stoichiometry (excess oxygen) and reduces flame stoichiometry (excess acetylene), and spray distance are the most critical factors, as they correlate significantly with coating porosity and corrosion performance. Hence, understanding the effects of these parameters is essential to further minimize the porosity, improving the corrosion performance of thermally sprayed coatings. In this work, a NiWCrBSi alloy coating was deposited via the oxyacetylene flame spray/Flexicord-wire (FS/FC) method. The effect of the flame oxygen/fuel ratio and spray distance on the microstructure properties and corrosion behavior of the coatings was investigated. Afterwards, the microstructure, phases' compositions, spray distance, and corrosion performance were studied. The equivalent circuit model was proposed, and the corrosion mechanism was discussed. The obtained results highlight that the oxygen-to-fuel ratio is a promising solution for the further application of flame spray/Flexicord-wire (FS/FC) cermet coatings in hostile environments. Depending on the flame's oxygen/fuel ratio, careful selection of the flame stoichiometry provides low porosity and high corrosion performance.

3.
Materials (Basel) ; 16(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512457

RESUMO

Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements' addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate the addition of ZrO2 as reinforcement to the self-fluxing alloy coatings. Mechanically mixed NiCrBSi-ZrO2 powders were thermally sprayed onto an industrially relevant high-grade steel. After thermal spraying, the samples were differently post-processed with a flame gun and with a vacuum furnace, respectively. Scanning electron microscopy showed a porosity reduction for the vacuum-heat-treated samples compared to that of the flame-post-processed ones. X-ray diffraction measurements showed differences in the main peaks of the patterns for the thermal processed samples compared to the as-sprayed ones, these having a direct influence on the mechanical behavior of the coatings. Although a slight microhardness decrease was observed in the case of vacuum-remelted samples, the overall low porosity and the phase differences helped the coating to perform better during wear-resistance testing, realized using a ball-on-disk arrangement, compared to the as-sprayed reference samples.

4.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242952

RESUMO

Among the FDM process variables, one of the less addressed in previous research is the filament color. Moreover, if not explicitly targeted, the filament color is usually not even mentioned. Aiming to point out if, and to what extent, the color of the PLA filaments influences the dimensional precision and the mechanical strength of FDM prints, the authors of the present research carried out experiments on tensile specimens. The variable parameters were the layer height (0.05 mm, 0.10 mm, 0.15 mm, 0.20 mm) and the material color (natural, black, red, grey). The experimental results clearly showed that the filament color is an influential factor for the dimensional accuracy as well as for the tensile strength of the FDM printed PLA parts. Moreover, the two way ANOVA test performed revealed that the strongest effect on the tensile strength was exerted by the PLA color (η2 = 97.3%), followed by the layer height (η2 = 85.5%) and the interaction between the PLA color and the layer height (η2 = 80.0%). Under the same printing conditions, the best dimensional accuracy was ensured by the black PLA (0.17% width deviations, respectively 5.48% height deviations), whilst the grey PLA showed the highest ultimate tensile strength values (between 57.10 MPa and 59.82 MPa).

5.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454636

RESUMO

Flame-sprayed NiCrBSi/WC-12Co composite coatings were deposited in different ratios on the surface of stainless steel. Oxyacetylene flame remelting treatment was applied to surfaces for refinement of the morphology of the layers and improvement of the coating/substrate adhesion. The performance of the coated specimens to cavitation erosion and electrochemical corrosion was evaluated by an ultrasonic vibratory method and, respectively, by polarization measurements. The microstructure was investigated by means of scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX). The obtained results demonstrated that the addition of 15 wt.% WC-12Co to the self-fluxing alloy improves the resistance to cavitation erosion (the terminal erosion rate (Vs) decreased with 15% related to that of the NiCrBSi coating) without influencing the good corrosion resistance in NaCl solution. However, a further increase in WC-Co content led to a deterioration of these coating properties (the Vs has doubled related to that of the NiCrBSi coating). Moreover, the corrosion behavior of the latter composite coating was negatively influenced, a fact confirmed by increased values for the corrosion current density (icorr). Based on the achieved experimental results, one may summarize that NiCrBSi/WC-Co composite coatings are able to increase the life cycle of expensive, high-performance components exposed to severe cavitation conditions.

6.
Polymers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267709

RESUMO

Polylactic acid (PLA) is produced from renewable materials, has a low melting temperature and has a low carbon footprint. These advantages have led to the extensive use of polylactic acid in additive manufacturing, particularly by fused filament fabrication (FFF). PLA parts that are 3D printed for industrial applications require stable mechanical properties and predictability regarding their dependence on the process parameters. Therefore, the development of the FFF process has been continuously accompanied by the development of software packages that generate CNC codes for the printers. A large number of user-controllable process parameters have been introduced in these software packages. In this respect, a lot of articles in the specialized literature address the issue of the influence of the process parameters on the mechanical properties of 3D-printed specimens. A systematic review of the research targeting the influence of process parameters on the mechanical properties of PLA specimens additively manufactured by fused filament fabrication was carried out by the authors of this paper. Six process parameters (layer thickness, printing speed, printing temperature, build plate temperature, build orientation and raster angle) were followed. The mechanical behavior was evaluated by tensile, compressive and bending properties.

7.
Polymers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631861

RESUMO

The printing variable least addressed in previous research aiming to reveal the effect of the FFF process parameters on the printed PLA part's quality and properties is the filament color. Moreover, the color of the PLA, as well as its manufacturer, are rarely mentioned when the experimental conditions for the printing of the samples are described, although current existing data reveal that their influence on the final characteristics of the print should not be neglected. In order to point out the importance of this influential parameter, a natural and a black-colored PLA filament, produced by the same manufacturer, were selected. The dimensional accuracy, tensile strength, and friction properties of the samples were analyzed and compared for printing temperatures ranging from 200 °C up to 240 °C. The experimental results clearly showed different characteristics depending on the polymer color of samples printed under the same conditions. Therefore, the optimization of the FFF process parameters for the 3D-printing of PLA should always start with the proper selection of the type of the PLA material, regarding both its color and the fabricant.

8.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683628

RESUMO

Yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) deposited on CoNiCrAlY oxidation protective bond coats are commonly required in temperature regimes up to 1200 °C (e.g., hot gas turbine regions) due to their superior thermal behavior and mechanical properties. For temperatures up to around 900 °C, oxidation protection can be alternatively provided by metallic-ceramic Cr-CrxOy coatings. For the present research, Cr-CrxOy atmospheric plasma sprayed (APS) and YSZ-CoNiCrAlY APS-high velocity oxy-fuel TBC coatings were deposited on a NiCr20Co18Ti substrate. The samples were isothermally heat treated at 900 °C for 10 h in an environmental atmosphere and subsequently isothermally oxidized at the same temperature for 1200 h. Investigations of the physical, chemical, and mechanical properties were performed on the as-sprayed, heat-treated, and oxidized samples. The oxidation behavior, microhardness, cohesion, and adhesion of the samples were correlated with the microstructural investigations and compared to the conventional TBC system. It could be shown that heat treating decreased the Cr-CrxOy coatings crack susceptibility and led to the formation of a protective thermally grown Cr oxide layer. The experimental work on the YSZ-CoNiCrAlY system revealed that the phase composition of the bond coat has a direct influence on the oxidation protection of the coating system.

9.
Materials (Basel) ; 15(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009231

RESUMO

The present study aimed to investigate the tribological behavior of high-temperature vacuum-brazed WC-Co-NiP functional coatings deposited on 16MnCr5 case hardening steel. Dry sliding wear resistance was evaluated using a non-conformal ball-on-disk arrangement, at room temperature against 100Cr6 and WC-Co static partners, respectively. Morphological, microstructural, and chemical composition analyses showed a complex, phased structure composed of tungsten carbide, nickel, and hard cobalt-based η-structure. In the testing conditions, the coefficient of friction against 100Cr6 and WC-Co counterparts entered a steady-state value after approximately 1000 m and 400 m, respectively. The wear track analysis revealed phenomena of particles trapped between the sliding bodies, as well as gradual removal of asperities. The calculations of the wear rates proved that the values were strongly influenced by properties of the sliding system, such as crystal structure, stress discontinuities, hardness, and material homogeneity.

10.
Materials (Basel) ; 14(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198711

RESUMO

The present study investigates the possibility to apply a vacuum furnace thermal post-treatment as an alternative solution for flame sprayed NiCrBSi wear and corrosion-resistant coatings, deposited on a low alloyed structural steel. The controlled atmosphere offers advantages regarding the fusion of the coating, porosity reduction, and degassing. An improvement of the applied heating-cooling cycle was performed through the variation of time and temperature. The best performing samples were selected by comparing their porosity and roughness values. The chosen samples were subsequently characterized regarding their microstructure, microhardness, sliding wear, and corrosion behavior. The experimental work confirms that the use of a vacuum remelting post-process reduces the porosity below 1% and leads to the formation of a larger quantity of hard boron-containing phases, promoting a significant decrease of the wear rate, while maintaining a good corrosion behavior.

11.
Anal Bioanal Chem ; 375(7): 875-83, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12707754

RESUMO

Plasma chemically modified carbon nanofibers were characterized by X-ray photoelectron spectroscopy with regard to the content of carbon, oxygen, and nitrogen and the contribution of carboxylic groups or ester, carbonyl and hydroxylic groups or ether on the surface. Unfortunately, X-ray photoelectron spectroscopy only provides an average value of the first 10 to 15 molecular layers. For comparison, depth profiles were measured and wet chemical methods were applied to estimate the thickness of the functionalized layer and the distribution of oxygen-containing functional groups within the near-surface layers. The results indicate that the fiber surface is covered by a monomolecular oxygen-containing layer and that plasma treatment allows a complete oxygen functionalization of the uppermost surface layer. The best conditions for plasma treatment found within the set of parameters applied to generate complete functionalization are: plasma gas O(2)/Ar ratio 1:1, gas pressure 1-1.5 hPa, plasma power 80 W, treatment time >or= 5 min. Additionally, three quick and easy methods are presented to estimate the efficiency of plasma treatment with regard to surface functionalization: pyrolysis, contact angle measurements, and light permeability measurements of aqueous carbon nanofiber suspensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA