Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Mutat ; 43(12): 1780-1794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251279

RESUMO

The Multiple Endocrine Neoplasia type 2 (MEN2) RET proto-oncogene database, originally published in 2008, is a comprehensive repository of all publicly available RET gene variations associated with MEN2 syndromes. The variant-specific genotype/phenotype information, age of earliest reported medullary thyroid carcinoma (MTC) onset, and relevant references with a brief summary of findings are cataloged. The ACMG/AMP 2015 consensus statement on variant classification was modified specifically for MEN2 syndromes and RET variants using ClinGen sequence variant interpretation working group recommendations and ClinGen expert panel manuscripts, as well as manuscripts from the American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma and other MEN2 RET literature. The classifications for the 166 single unique variants in the MEN2 RET database were reanalyzed using the MEN2 RET specifically modified ACMG/AMP classification guidelines (version 1). Applying these guidelines added two new variant classifications to the database (likely benign and likely pathogenic) and resulted in clinically significant classification changes (e.g., from pathogenic to uncertain) in 15.7% (26/166) of the original variants. Of those clinically significant changes, the highest percentage of changes, 46.2% (12/26), were changes from uncertain to benign or likely benign. The modified ACMG/AMP criteria with MEN2 RET specifications will optimize and standardize RET variant classifications.


Assuntos
Carcinoma Medular , Neoplasia Endócrina Múltipla Tipo 2a , Neoplasias da Glândula Tireoide , Humanos , Neoplasia Endócrina Múltipla Tipo 2a/genética , Neoplasia Endócrina Múltipla Tipo 2a/patologia , Carcinoma Medular/genética , Proteínas Proto-Oncogênicas c-ret/genética , Síndrome , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Monofosfato de Adenosina
2.
J Med Genet ; 55(12): 824-830, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30244195

RESUMO

INTRODUCTION: Hereditary haemorrhagic telangiectasia (HHT) is a genetically heterogeneous disorder caused by mutations in the genes ENG, ACVRL1, and SMAD4. Yet the genetic cause remains unknown for some families even after exhaustive exome analysis. We hypothesised that non-coding regions of the known HHT genes may harbour variants that disrupt splicing in these cases. METHODS: DNA from 35 individuals with clinical findings of HHT and 2 healthy controls from 13 families underwent whole genome sequencing. Additionally, 87 unrelated cases suspected to have HHT were evaluated using a custom designed next-generation sequencing panel to capture the coding and non-coding regions of ENG, ACVRL1 and SMAD4. Individuals from both groups had tested negative previously for a mutation in the coding region of known HHT genes. Samples were sequenced on a HiSeq2500 instrument and data were analysed to identify novel and rare variants. RESULTS: Eight cases had a novel non-coding ACVRL1 variant that disrupted splicing. One family had an ACVRL1intron 9:chromosome 3 translocation, the first reported case of a translocation causing HHT. The other seven cases had a variant located within a ~300 bp CT-rich 'hotspot' region of ACVRL1intron 9 that disrupted splicing. CONCLUSIONS: Despite the difficulty of interpreting deep intronic variants, our study highlights the importance of non-coding regions in the disease mechanism of HHT, particularly the CT-rich hotspot region of ACVRL1intron 9. The addition of this region to HHT molecular diagnostic testing algorithms will improve clinical sensitivity.


Assuntos
Receptores de Activinas Tipo II/genética , Genômica , Íntrons , Mutação , Splicing de RNA , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Sequência de Bases , Estudos de Casos e Controles , Mapeamento Cromossômico , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Família Multigênica , Linhagem , RNA não Traduzido , Análise de Sequência de DNA , Translocação Genética
3.
Am J Hum Genet ; 94(4): 599-610, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24702956

RESUMO

Phevor integrates phenotype, gene function, and disease information with personal genomic data for improved power to identify disease-causing alleles. Phevor works by combining knowledge resident in multiple biomedical ontologies with the outputs of variant-prioritization tools. It does so by using an algorithm that propagates information across and between ontologies. This process enables Phevor to accurately reprioritize potentially damaging alleles identified by variant-prioritization tools in light of gene function, disease, and phenotype knowledge. Phevor is especially useful for single-exome and family-trio-based diagnostic analyses, the most commonly occurring clinical scenarios and ones for which existing personal genome diagnostic tools are most inaccurate and underpowered. Here, we present a series of benchmark analyses illustrating Phevor's performance characteristics. Also presented are three recent Utah Genome Project case studies in which Phevor was used to identify disease-causing alleles. Collectively, these results show that Phevor improves diagnostic accuracy not only for individuals presenting with established disease phenotypes but also for those with previously undescribed and atypical disease presentations. Importantly, Phevor is not limited to known diseases or known disease-causing alleles. As we demonstrate, Phevor can also use latent information in ontologies to discover genes and disease-causing alleles not previously associated with disease.


Assuntos
Alelos , Bases de Dados Genéticas , Predisposição Genética para Doença , Humanos , Mutação
5.
Am J Hum Genet ; 93(5): 812-24, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24140114

RESUMO

Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs(∗)7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853(∗)), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.


Assuntos
Imunodeficiência de Variável Comum/genética , Mutação em Linhagem Germinativa , Subunidade p52 de NF-kappa B/genética , Transdução de Sinais , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem Celular , Criança , Imunodeficiência de Variável Comum/patologia , Modelos Animais de Doenças , Feminino , Testes Genéticos , Heterozigoto , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Microscopia Confocal , Dados de Sequência Molecular , Subunidade p52 de NF-kappa B/metabolismo , Linhagem , Fenótipo , Adulto Jovem
6.
J Med Genet ; 52(4): 256-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612910

RESUMO

BACKGROUND: Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. METHODS: Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline (peripheral blood). RESULTS: A germline NF1 splice site mutation (c.61-2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. CONCLUSIONS: Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes.


Assuntos
Genes da Neurofibromatose 1 , Mutação , Neurofibromatose 1/genética , Pseudoartrose/genética , Tíbia/patologia , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Radiografia , Tíbia/diagnóstico por imagem
7.
Am J Med Genet A ; 164A(1): 17-28, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259288

RESUMO

Three related males presented with a newly recognized x-linked syndrome associated with neurodegeneration, cutaneous abnormalities, and systemic iron overload. Linkage studies demonstrated that they shared a haplotype on Xp21.3-Xp22.2 and exome sequencing was used to identify candidate variants. Of the segregating variants, only a PIGA mutation segregated with disease in the family. The c.328_330delCCT PIGA variant predicts, p.Leu110del (or c.1030_1032delCTT, p.Leu344del depending on the reference sequence). The unaffected great-grandfather shared his X allele with the proband but he did not have the PIGA mutation, indicating that the mutation arose de novo in his daughter. A single family with a germline PIGA mutation has been reported; affected males had a phenotype characterized by multiple congenital anomalies and severe neurologic impairment resulting in infantile lethality. In contrast, affected boys in the family described here were born without anomalies and were neurologically normal prior to onset of seizures after 6 months of age, with two surviving to the second decade. PIGA encodes an enzyme in the GPI anchor biosynthesis pathway. An affected individual in the family studied here was deficient in GPI anchor proteins on granulocytes but not erythrocytes. In conclusion, the PIGA mutation in this family likely causes a reduction in GPI anchor protein cell surface expression in various cell types, resulting in the observed pleiotropic phenotype involving central nervous system, skin, and iron metabolism.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação em Linhagem Germinativa , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Sobrecarga de Ferro/genética , Proteínas de Membrana/genética , Espasmos Infantis/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Autopsia , Sequência de Bases , Biópsia , Encéfalo/patologia , Encéfalo/ultraestrutura , Análise Mutacional de DNA , Fácies , Evolução Fatal , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Humanos , Lactente , Sobrecarga de Ferro/diagnóstico , Rim/patologia , Fígado/patologia , Linfócitos/ultraestrutura , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/química , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Pele/patologia , Espasmos Infantis/diagnóstico , Baço/patologia , Síndrome
8.
BMC Bioinformatics ; 14 Suppl 13: S2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266885

RESUMO

BACKGROUND: Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment errors create "false positive" variants, which are often retained in the variant screening process. Methods to remove false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize variants based on a false positive variant likelihood prediction. METHODS: VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled, likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina HiSeq, exome and whole genome samples (proband's family or unrelated samples). At variant sites without apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values. Depending on the separation of a proband's variant PLRD value from the cluster of wild type/non-variant PLRD values for background samples at the same variant change and position, the VarBin method's classification is assigned to each proband variant (Bin 1 to Bin 4). RESULTS: To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4. CONCLUSIONS: These data indicate that VarBin correctly classifies the majority of true variants as Bin 1 and Bin 3/4 contained only false positive variants. The "uncertain" Bin 2 contained both true and false positive variants. Future work will further differentiate the variants in Bin 2.


Assuntos
Variação Genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Análise por Conglomerados , Exoma/genética , Feminino , Predisposição Genética para Doença , Genoma/genética , Biblioteca Genômica , Heterozigoto , Humanos , Funções Verossimilhança , Masculino , Linhagem , Valor Preditivo dos Testes , Software
9.
J Mol Diagn ; 24(8): 915-923, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35595154

RESUMO

Friedreich ataxia is a rare autosomal recessive, neuromuscular degenerative disease caused by an expansion of a trinucleotide [guanine-adenine-adenine (GAA)] repeat in intron 1 of the FXN gene. It is common in the White population, characterized by progressive gait and limb ataxia, lack of tendon reflexes in the legs, loss of position sense, and hypertrophic cardiomyopathy. Detection and genotyping of the trinucleotide repeat length is important for the diagnosis and prognosis of the disease. A two-tier genotyping assay with an improved triple-repeat primed PCR (TR-PCR) for alleles <200 GAA repeats (±1 to 5 repeats) and an agarose gel-based, long-range PCR (LR-PCR) assay to genotype expanded alleles >200 GAA repeats (±50 repeats) is described. Of the 1236 DNA samples tested using TR-PCR, 31 were identified to have expanded alleles >200 repeats and were reflexed to the LR-PCR procedure for confirmation and quantification. The TR-PCR assay described herein is a diagnostic genotyping assay that reduces the need for further testing. The LR-PCR component is a confirmatory test for true homozygous and heterozygous samples with normal and expanded alleles, as indicated by the TR-PCR assay. The use of this two-tier method offers a comprehensive evaluation to detect and genotype the smallest and largest number of GAA repeats, improving the classification of FXN alleles as normal, mutable normal, borderline, and expanded alleles.


Assuntos
Ataxia de Friedreich , Adenina , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Genótipo , Guanina , Humanos , Proteínas de Ligação ao Ferro/genética , Reação em Cadeia da Polimerase , Sefarose , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos
10.
Clin Chem Lab Med ; 50(7): 1161-8, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22850020

RESUMO

In the relatively short time frame since the introduction of next generation sequencing, it has become a method of choice for complex genomic research studies. As a paradigm shifting technology, we are now witnessing its translation into clinical diagnostic laboratories for patient care. Multi-gene panels for a variety of disorders are now available in several clinical laboratories based on targeted gene enrichment followed by next generation sequencing. Genome wide interrogation of protein coding regions, or exome sequencing, has been successfully and increasingly applied in the research setting for the elucidation of candidate genes and causal variants in individuals and families with a diversity of rare and complex genetic disorders. Based on this progress, exome sequencing is also beginning a translational process into clinical practice. However, introducing exome sequencing as a diagnostic modality poses new technical and bioinformatics challenges for clinical laboratories. In this review, we present technical and bioinformatics aspects of exome sequencing, describe representative examples from the literature of how exome sequencing has been used for candidate gene discovery, and discuss considerations for its clinical translation.


Assuntos
Exoma , Técnicas de Diagnóstico Molecular/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pesquisa Translacional Biomédica
11.
Hum Mutat ; 30(4): 548-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19177457

RESUMO

Multiple endocrine neoplasia type 2 (MEN2) is an inherited, autosomal-dominant disorder caused by deleterious mutations within the RET protooncogene. MEN2 RET mutations are mainly heterozygous, missense sequence changes found in RET exons 10, 11, and 13-16. Our group has developed the publicly available, searchable MEN2 RET database to aid in genotype/phenotype correlations, using Human Genome Variation Society recommendations for sequence variation nomenclature and database content. The MEN2 RET database catalogs all RET sequence variation relevant to the MEN2 syndromes, with associated clinical information. Each database entry lists a RET sequence variation's location within the RET gene, genotype, pathogenicity classification, MEN2 phenotype, first literature reference, and comments (which may contain information on other clinical features, complex genotypes, and additional literature references). The MEN2 phenotype definitions were derived from the International RET Mutation Consortium guidelines for classification of MEN2 disease phenotypes. Although nearly all of the 132 RET sequence variation entries initially cataloged in the database were from literature reports, novel sequence variation and updated phenotypic information for any existing database entry can be submitted electronically on the database website. The database website also contains links to selected MEN2 literature reviews, gene and protein information, and RET reference sequences. The MEN2 RET database (www.arup.utah.edu/database/MEN2/MEN2_welcome.php) will serve as a repository for MEN2-associated RET sequence variation and reference for RET genotype/MEN2 phenotype correlations.


Assuntos
Bases de Dados Factuais , Neoplasia Endócrina Múltipla Tipo 2a/genética , Proteínas Proto-Oncogênicas c-ret/genética , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Internet , Neoplasia Endócrina Múltipla Tipo 2a/classificação , Neoplasia Endócrina Múltipla Tipo 2a/patologia , Mutação , Fenótipo
12.
J Mol Neurosci ; 68(1): 11-18, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30778836

RESUMO

Scoliosis is a common manifestation of neurofibromatosis type 1, causing significant morbidity. The etiology of dystrophic scoliosis in neurofibromatosis type 1 is not fully understood and therapies are lacking. Somatic mutations in NF1 have been shown in tibial pseudarthrosis providing rationale for similar processes in neurofibromatosis type 1-associated dystrophic scoliosis. Spinal samples from surgical procedures with matched peripheral blood of two individuals with neurofibromatosis type 1 and dystrophic scoliosis were obtained and DNA extracted. Next generation sequencing of various spinal sections as well as the germline/blood sample were performed using a RASopathy gene panel (includes the NF1 gene). Variants were compared between the spinal tissue samples and the germline data. In addition, the next generation sequencing allele frequency data were used to detect somatic loss of heterozygosity. All samples had a detected potentially inactivating NF1 germline mutation. Both individuals demonstrated an allelic imbalance inclusive of NF1 in the next generation sequencing data. In addition, for the same two individuals, there was an increase in the % variant reads for the germline mutation in some of the surgical spinal samples corresponding to the allelic imbalance. Contra analysis did not show any deletion in Chromosome 17 next generation sequencing data. Microarray analysis verified somatic copy neutral loss of heterozygosity for these two individuals for the majority of the chromosome 17 q-arm, inclusive of the NF1 gene. These results suggest that the cause of dystrophic scoliosis is multifactorial and that a somatic NF1 mutation contributes to the etiology.


Assuntos
Neurofibromatose 1/genética , Neurofibromina 1/genética , Escoliose/genética , Criança , Feminino , Frequência do Gene , Humanos , Perda de Heterozigosidade , Masculino , Mutação , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Escoliose/etiologia , Escoliose/patologia , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia
14.
J Mol Diagn ; 10(2): 123-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18258924

RESUMO

Multiple endocrine neoplasia type 2B (MEN2B) is an autosomal dominant, inherited cancer syndrome. MEN2B patients have a high risk of developing medullary thyroid carcinoma, and prophylactic thyroidectomy is recommended by 6 months of age. Genetic testing can identify MEN2B patients before cancer progression. Two RET proto-oncogene mutations, in exon 15 at codon 883 (GCT>TTT) and in exon 16 at codon 918 (ATG>ACG), account for more than 98% of MEN2B cases. An assay using unlabeled probes and the LightCycler 480 instrument was developed to genotype these two common MEN2B RET mutations. Asymmetric polymerase chain reaction was used to increase ssDNA products followed by melting analysis of the unlabeled probe/ssDNA amplicon duplex. The available samples were either patient DNA of known RET genotype or artificial templates. Analysis of the codon 883 heterozygous mutation demonstrated a DeltaT(m) of 5.70 +/- 0.11 degrees C, while the codon 918 heterozygous mutation generated a DeltaT(m) of -5.72 +/- 0.11 degrees C. Samples with the targeted RET mutation genotypes were accurately detected and easily distinguishable from five other reported sequence changes using these probes. Thus, MEN2B diagnosis using unlabeled probes and the LightCycler 480 is a rapid, closed-tube method that is less time consuming and less expensive than sequencing. This assay demonstrates 100% specificity and sensitivity for the identification of RET mutations causative of MEN2B.


Assuntos
Sondas de DNA/metabolismo , Neoplasia Endócrina Múltipla Tipo 2b/diagnóstico , Reação em Cadeia da Polimerase/instrumentação , Éxons/genética , Genótipo , Humanos , Desnaturação de Ácido Nucleico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética
15.
Child Neurol Open ; 5: 2329048X18789282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046645

RESUMO

Next-generation sequencing was performed for 2 families with an undiagnosed neurologic disease. Analysis revealed X-linked mutations in the proteolipid protein 1 (PLP1) gene, which is associated with X-linked Pelizaeus-Merzbacher disease and Spastic Paraplegia type 2. In family A, the novel PLP1 missense mutation c.617T>A (p.M206K) was hemizygous in the 2 affected male children and heterozygous in the mother. In family B, the novel de novoPLP1 frameshift mutation c.359_369del (p.G120fs) was hemizygous in the affected male child. Although PLP1 mutations have been reported to cause an increasingly wide range of phenotypes inclusive of the dystonia, spastic paraparesis, motor neuronopathy, and leukodystrophy observed in our patients, atypical features included the cerebrospinal fluid deficiency of neurotransmitter and pterin metabolites and the delayed appearance of myelin abnormalities on neuroimaging studies. Next-generation sequencing studies provided a diagnosis for these families with complex leukodystrophy disease phenotypes, which expanded the spectrum of PLP1-associated leukodystrophy clinical phenotypes.

16.
J Mol Diagn ; 9(3): 290-6, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17591927

RESUMO

An unlabeled probe assay relies on a double-stranded DNA-binding dye to detect and verify target based on amplicon and probe melting. During the development and application of unlabeled probe assays, aberrant melting peaks are sometimes observed that may interfere with assay interpretation. In this report, we investigated the origin of aberrant melting profiles observed in an unlabeled probe assay for exon 10 of the RET gene. It was determined that incomplete 3' blocking of the unlabeled probe allowed polymerase-mediated probe extension resulting in extension products that generated the aberrant melting profiles. This report further examined the blocking ability of the 3' modifications C3 spacer, amino-modified C6, phosphate, inverted dT, and single 3' nucleotide mismatches in unlabeled probe experiments. Although no 3' blocking modifications in these experiments were 100% effective, the amino-modified C6, inverted dT, and C3 spacer provided the best blocking efficiencies (1% or less unblocked), phosphate was not as effective of a block (up to 2% unblocked), and single nucleotide mismatches should be avoided as a 3' blocking modification.


Assuntos
Análise Mutacional de DNA/métodos , Sondas de Oligonucleotídeos/química , Temperatura de Transição , Sequência de Bases , Replicação do DNA , Corantes Fluorescentes/química , Humanos , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Sondas de Oligonucleotídeos/análise , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-ret/análise , Proteínas Proto-Oncogênicas c-ret/genética
17.
J Mol Diagn ; 9(2): 184-96, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17384210

RESUMO

Single bp mutations in the RET proto-oncogene can cause multiple endocrine neoplasia type 2 syndromes. The conventional approach for genotyping RET mutations is sequencing the exons. A closed-tube RET genotyping assay using a saturating DNA dye, unlabeled probes, and amplicon high-resolution melting analysis was developed. The method required two sequential polymerase chain reaction stages, a primary and secondary assay. The primary assay analyzed RET exons 10, 11, 13, 14, and 16 with a total of seven reactions using eight unlabeled probes. The primary assay genotyped wild-type exons, a common exon 13 polymorphism, and an exon 16 mutation, whereas other RET sequence variation was detected. The primary unlabeled probe data limited the possible genotypes for the detected RET sequence variation, which permitted genotyping in a secondary assay with only two to five reactions. Six probes were designed with the masking technique and masked selected sequence variations to allow unambiguous analysis of other mutations elsewhere under the probe. After this two-stage RET genotyping assay, less than 0.2% of exons tested would require sequencing for genotype. A blinded study generated from five wild type and 29 available RET sequence variation samples was 100% concordant with sequencing. Amplicon high-resolution melting analysis with unlabeled probes and the masking technique is a fast, accurate method for genotyping the >50 RET sequence variations.


Assuntos
Sondas de DNA/metabolismo , Testes Genéticos/métodos , Desnaturação de Ácido Nucleico , Proteínas Proto-Oncogênicas c-ret/genética , Códon/genética , Análise Mutacional de DNA , Éxons/genética , Genótipo , Humanos , Mutação/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético/genética , Proto-Oncogene Mas
18.
Am J Clin Pathol ; 127(3): 341-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17276934

RESUMO

Two methods for closed-tube single nucleotide polymorphism (SNP) genotyping without labeled probes have become available: unlabeled probe and amplicon melting. Unlabeled probe and amplicon melting assays were compared using 5 SNPs: human platelet antigens 1, 2, 5, and 15 and a C>T variant located 13910 base pairs (bp) upstream of the lactase gene. LCGreen Plus (Idaho Technology, Salt Lake City, UT) was used as the saturating DNA dye. Unlabeled probe data were readily interpretable and accurate for all amplicon lengths tested. Five targets that ranged in size from 42 to 72 bp were well resolved by amplicon melting on the LightScanner (Idaho Technology) or LightTyper (Roche, Indianapolis, IN) with no errors in genotyping. However, when larger amplicons (206 bp) were used and analyzed on lower resolution instruments (LightTyper and I-Cycler, Bio-Rad, Hercules, CA), the accuracy of amplicon genotyping was only 73% to 77%. When 2 temperature standards were used to bracket the amplicon of interest, the accuracy of amplicon genotyping of SNPs was increased to 100% (LightTyper) and 88% (I-Cycler).


Assuntos
Sondas de Oligonucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , DNA/sangue , DNA/química , DNA/genética , Genótipo , Humanos , Sondas de Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Análise de Sequência de DNA/instrumentação , Temperatura de Transição
19.
J Leukoc Biol ; 80(2): 383-98, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16735694

RESUMO

The mouse Pactolus and CD18 genes are highly conserved paralogues. The expression patterns of these genes are diverse in that most cells of hematopoietic lineage express CD18, but Pactolus is only expressed by maturing neutrophils. The minimal promoters of these two genes are homologous, including the conservation of two tandem PU.1-binding sites upstream of the transcriptional start site. To define the means by which these two structurally similar but functionally distinct promoters operate, a series of reporter assays, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analyses, were performed. Transfection of Pactolus constructs into mouse macrophages, which do not express Pactolus, defined a negative control element within the first 100 base pairs. The presence of this negative regulatory site, distinct from the PU.1-binding site, was confirmed by EMSA oligonucleotide competition and gene reporter assays of Pactolus/CD18 chimeric constructs. Although PU.1 binding can be detected on Pactolus and CD18 minimal promoter segments with EMSA, only the CD18 promoter shows PU.1 binding in vivo, suggesting that the negative regulatory protein may block PU.1 from binding to the Pactolus promoter, thus inhibiting transcription of the gene. Sequence analysis of the negative control region in the Pactolus promoter suggested potential control by Snail and/or Smad families of transcription regulators. EMSA supershift analysis with antibodies against these proteins, using extracts from macrophages and mucosal mast cells, identified specific binding of Smuc to the promoter element, including a Smuc/PU.1/DNA trimeric complex. These data implicate Smuc as blocking Pactolus transcription in cells expressing PU.1 (and CD18) but not Pactolus.


Assuntos
Antígenos CD18/genética , Regulação da Expressão Gênica , Integrina beta1/genética , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Evolução Molecular , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição da Família Snail , Transativadores/genética , Fatores de Transcrição/metabolismo , Transfecção
20.
J Mol Diagn ; 19(3): 468-474, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28433079

RESUMO

A subset of neurofibromatosis type 1 patients develop tibial dysplasia, which can lead to pseudarthrosis. The tissue from the tibial pseudarthrosis region commonly has a somatic second hit in NF1: single-nucleotide variants, small deletions, or loss of heterozygosity (LOH). We used exome next-generation sequencing (NGS) variant frequency data (allelic imbalance analysis) to detect somatic LOH in pseudarthrosis tissue from three individuals with clinically and diagnostically confirmed neurofibromatosis type 1, and verified the results with microarray. The variant files were parsed and plotted using python scripts, and the NGS variant frequencies between the affected tissue and blood sample were compared. Individuals without somatic single-nucleotide variants or small insertions/deletions were tested for somatic LOH using the NGS variant allele frequencies. One individual's NGS data indicated no LOH in chromosome 17. The other two individuals demonstrated somatic LOH inclusive of NF1: one had an LOH region of approximately one million bases and Contra (NGS copy number program) indicated a somatic deletion and the other individual had LOH for most of chromosome 17q and Contra indicated no copy number change (microarray data verified this sample as copy neutral somatic LOH). Both LOH and copy number variation detected by NGS data correlated with microarray data, demonstrating the somatic LOH second hit can be detected directly from the NGS data.


Assuntos
Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perda de Heterozigosidade/genética , Neurofibromatose 1/genética , Pseudoartrose/genética , Desequilíbrio Alélico , Variações do Número de Cópias de DNA/genética , Feminino , Frequência do Gene/genética , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA