Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(15): 4384-4400, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37179467

RESUMO

In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Ribossômico/metabolismo , Metilação , Ferro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
2.
Plant Cell Physiol ; 63(6): 829-841, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35388430

RESUMO

Iron (Fe) uptake and translocation in plants are fine-tuned by complex mechanisms that are not yet fully understood. In Arabidopsis thaliana, local regulation of Fe homeostasis at the root level has been extensively studied and is better understood than the systemic shoot-to-root regulation. While the root system is solely a sink tissue that depends on photosynthates translocated from source tissues, the shoot system is a more complex tissue, where sink and source tissues occur synchronously. In this study, and to gain better insight into the Fe deficiency responses in leaves, we overexpressed Zinc/Iron-regulated transporter-like Protein (ZIP5), an Fe/Zn transporter, in phloem-loading cells (proSUC2::AtZIP5) and determined the timing of Fe deficiency responses in sink (young leaves and roots) and source tissues (leaves). Transgenic lines overexpressing ZIP5 in companion cells displayed increased sensitivity to Fe deficiency in root growth assays. Moreover, young leaves and roots (sink tissues) displayed either delayed or dampened transcriptional responses to Fe deficiency compared to wild-type (WT) plants. We also took advantage of the Arabidopsis mutant nas4x-1 to explore Fe transcriptional responses in the opposite scenario, where Fe is retained in the vasculature but in an unavailable and precipitated form. In contrast to proSUC2::AtZIP5 plants, nas4x-1 young leaves and roots displayed a robust and constitutive Fe deficiency response, while mature leaves showed a delayed and dampened Fe deficiency response compared to WT plants. Altogether, our data provide evidence suggesting that Fe sensing within leaves can also occur locally in a leaf-specific manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
3.
New Phytol ; 231(5): 1956-1967, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34080200

RESUMO

Iron (Fe) is an essential element, its transport is regulated by the cell redox balance. In seeds, Fe enters the embryo as Fe2+ and is stored in vacuoles as Fe3+ . Through its ferric reduction activity, ascorbate plays a major role in Fe redox state and therefore Fe transport within the seed. We searched for ascorbate membrane transporters responsible for controlling Fe reduction by screening the yeast ferric reductase-deficient fre1 strain and isolated AtDTX25, a member of the Multidrug And Toxic compound Extrusion (MATE) family. AtDTX25 was shown to mediate ascorbate efflux when expressed in yeast and Xenopus oocytes, in a pH-dependent manner. In planta, AtDTX25 is highly expressed during germination and encodes a vacuolar membrane protein. Isolated vacuoles from AtDTX25-1 knockout mutant contained less ascorbate and more Fe than wild-type (WT), and mutant seedlings were highly sensitive to Fe deficiency. Iron imaging further showed that the remobilisation of Fe from vacuoles was highly impaired in mutant seedlings. Taken together, our results established AtDTX25 as a vacuolar ascorbate transporter, required during germination to promote the reduction of the pool of stored Fe3+ and its remobilisation to feed the developing seedling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ferro/metabolismo , Vacúolos/metabolismo
4.
Biochem J ; 477(1): 259-274, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31950999

RESUMO

To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.


Assuntos
Arabidopsis/metabolismo , Germinação/fisiologia , Ferro/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia
5.
Plant Physiol ; 179(4): 1581-1593, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718348

RESUMO

Physiological acclimation of plants to an everchanging environment is governed by complex combinatorial signaling networks that perceive and transduce various abiotic and biotic stimuli. Reactive oxygen species (ROS) serve as one of the second messengers in plant responses to hyperosmotic stress. The molecular bases of ROS production and the primary cellular processes that they target were investigated in the Arabidopsis (Arabidopsis thaliana) root. Combined pharmacological and genetic approaches showed that the RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) pathway and an additional pathway involving apoplastic ascorbate and iron can account for ROS production upon hyperosmotic stimulation. The two pathways determine synergistically the rate of membrane internalization, within minutes after activation. Live superresolution microscopy revealed at single-molecule scale how ROS control specific diffusion and nano-organization of membrane cargo proteins. In particular, ROS generated by RBOHs initiated clustering of the PLASMA MEMBRANE INTRINSIC PROTEIN2;1 aquaporin and its removal from the plasma membrane. This process is contributed to by clathrin-mediated endocytosis, with a positive role of RBOH-dependent ROS, specifically under hyperosmotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pressão Osmótica , Espécies Reativas de Oxigênio/metabolismo , Aquaporinas/análise , Aquaporinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Endocitose , Domínios Proteicos , Transdução de Sinais
6.
Plant Cell ; 29(12): 3068-3084, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180598

RESUMO

Plants require trace levels of manganese (Mn) for survival, as it is an essential cofactor in oxygen metabolism, especially O2 production via photosynthesis and the disposal of superoxide radicals. These processes occur in specialized organelles, requiring membrane-bound intracellular transporters to partition Mn between cell compartments. We identified an Arabidopsis thaliana member of the NRAMP family of divalent metal transporters, NRAMP2, which functions in the intracellular distribution of Mn. Two knockdown alleles of NRAMP2 showed decreased activity of photosystem II and increased oxidative stress under Mn-deficient conditions, yet total Mn content remained unchanged. At the subcellular level, these phenotypes were associated with a loss of Mn content in vacuoles and chloroplasts. NRAMP2 was able to rescue the mitochondrial yeast mutant mtm1∆ In plants, NRAMP2 is a resident protein of the trans-Golgi network. NRAMP2 may act indirectly on downstream organelles by building up a cytosolic pool that is used to feed target compartments. Moreover, not only does the nramp2 mutant accumulate superoxide ions, but NRAMP2 can functionally replace cytosolic superoxide dismutase in yeast, indicating that the pool of Mn displaced by NRAMP2 is required for the detoxification of reactive oxygen species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Espaço Intracelular/metabolismo , Manganês/metabolismo , Fotossíntese , Rede trans-Golgi/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Cloroplastos/metabolismo , Epistasia Genética , Manganês/deficiência , Modelos Biológicos , Mutação/genética , Oxirredução , Estresse Oxidativo , Permeabilidade , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Saccharomyces cerevisiae/metabolismo , Nicotiana , Vacúolos/metabolismo
7.
New Phytol ; 214(2): 521-525, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27918629

RESUMO

Contents 521 I. 521 II. 522 III. 523 IV. 524 525 References 525 SUMMARY: Plant iron (Fe) uptake relies to a large extent on the capacity of cells to control and extract Fe pools safely conserved in extracytoplasmic environments such as the apoplast and vacuoles, at least as much as on the transport machinery nested in plasma membranes. Recent studies on root and embryo Fe nutrition support this assertion and show that the root Fe-deficiency response also includes the dynamic use of a large Fe reservoir bound to cell wall components in the root apoplast, secretion in the apoplast of phenolic compounds of the coumarin family, which solubilize Fe in calcareous soils, and inhibition of suberization of endodermal cells in order to allow apoplastic and transcellular radial transport of Fe. All of these responses are regulated by the stress hormones ethylene and abscisic acid (ABA), suggesting an integrated strategy within the root to adapt to Fe shortage. For its nutrition, the embryo has developed both an original uptake mechanism, in which ascorbate is effluxed to chemically reduce Fe3+ to the transport-competent Fe2+ form, and an efficient strategy to control utilization of a large Fe pool in vacuoles. This review will attempt to summarize exciting new insights into the diverse routes that Fe takes to feed plant tissues.


Assuntos
Ferro/metabolismo , Plantas/metabolismo , Espaço Extracelular/química , Fenômenos Fisiológicos da Nutrição , Raízes de Plantas/metabolismo , Sementes/metabolismo
8.
New Phytol ; 211(3): 1129-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111838

RESUMO

Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum. The procedure is based on direct injection using hydrophilic interaction chromatography with dual detection by elemental (inductively coupled plasma mass spectrometry) and molecular (high-resolution electrospray mass spectrometry) mass spectrometric detection. Numerous and novel complexes of iron(II), iron(III), copper(II), zinc, manganese, cobalt(II), cobalt(III), magnesium, calcium, nickel and molybdenum(IV) with several ligands including nicotianamine, citrate, malate, histidine, glutamine, aspartic acid, asparagine, phenylalanine and others are observed in pea fluids and discussed. This methodology provides a large inventory of various types of metal complexes, which is a significant asset for future biochemical and genetic studies into metal transport/homeostasis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Complexos de Coordenação/análise , Espectrometria de Massas/métodos , Plantas/química , Aminoácidos/metabolismo , Transporte Biológico , Ácidos Carboxílicos/metabolismo , Homeostase , Interações Hidrofóbicas e Hidrofílicas , Metaboloma , Metais/análise , Pisum sativum/metabolismo , Reprodutibilidade dos Testes , Sementes/metabolismo , Xilema/metabolismo
9.
Plant Cell ; 25(3): 1040-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23512854

RESUMO

In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant's ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Adaptação Biológica , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Senescência Celular , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/fisiologia , Ferritinas/genética , Ferritinas/metabolismo , Homeostase , Fenótipo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/fisiologia
10.
J Biol Chem ; 289(5): 2515-25, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24347170

RESUMO

Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.


Assuntos
Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Ferro/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Radioisótopos de Ferro , Malatos/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo
11.
J Biol Chem ; 288(31): 22670-80, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23788639

RESUMO

A yeast one-hybrid screening allowed the selection of PHR1 as a factor that interacted with the AtFer1 ferritin gene promoter. In mobility shift assays, PHR1 and its close homologue PHL1 (PHR1-like 1) interact with Element 2 of the AtFer1 promoter, containing a P1BS (PHR1 binding site). In a loss of function mutant for genes encoding PHR1 and PHL1 (phr1 phl1 mutant), the response of AtFer1 to phosphate starvation was completely lost, showing that the two transcription factors regulate AtFer1 expression upon phosphate starvation. This regulation does not involve the IDRS (iron-dependent regulatory sequence) present in the AtFer1 promoter and involved in the iron-dependent regulation. The phosphate starvation response of AtFer1 is not linked to the iron status of plants and is specifically initiated by phosphate deficiency. Histochemical localization of iron, visualized by Perls DAB staining, was strongly altered in a phr1 phl1 mutant, revealing that both PHR1 and PHL1 are major factors involved in the regulation of iron homeostasis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Ferritinas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Ferro/metabolismo , Fosfatos/metabolismo , Fatores de Transcrição/fisiologia , Regiões Promotoras Genéticas , Transdução de Sinais
12.
Plant Cell Physiol ; 55(11): 1912-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25231959

RESUMO

Phytic acid (PA) is the main phosphorus storage form in plant seeds. It is recognized as an anti-nutrient for humans and non-ruminant animals, as well as one of the major sources of phosphorus that contributes to eutrophication. Therefore, engineering plants with low PA content without affecting plant growth capacity has become a major focus in plant breeding. Nevertheless, lack of knowledge on the role of PA seed reserves in regulating plant growth and in maintaining ion homeostasis hinders such an agronomical application. In this context, we report here that the over-expression of the bacterial phytase PHY-US417 in Arabidopsis leads to a significant decrease in seed PA, without any effect on the seed germination potential. Interestingly, this over-expression also induced a higher remobilization of free iron during germination. Moreover, the PHY-over-expressor lines show an increase in inorganic phosphate and sulfate contents, and a higher biomass production after phosphate starvation. Finally, phosphate sensing was altered because of the changes in the expression of genes induced by phosphate starvation or involved in phosphate or sulfate transport. Together, these results show that the over-expression of PHY-US417 reduces PA concentration, and provide the first evidence for the involvement of PA in the regulation of sulfate and phosphate homeostasis and signaling.


Assuntos
6-Fitase/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Ácido Fítico/metabolismo , Sulfatos/metabolismo , 6-Fitase/genética , 6-Fitase/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Ferro/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Transdução de Sinais
13.
Trends Plant Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570279

RESUMO

Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.

14.
Plant Cell ; 22(3): 904-17, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20228245

RESUMO

In contrast with many other essential metals, the mechanisms of Mn acquisition in higher eukaryotes are seldom studied and poorly understood. We show here that Arabidopsis thaliana relies on a high-affinity uptake system to acquire Mn from the soil in conditions of low Mn availability and that this activity is catalyzed by the divalent metal transporter NRAMP1 (for Natural Resistance Associated Macrophage Protein 1). The nramp1-1 loss-of-function mutant grows poorly, contains less Mn than the wild type, and fails to take up Mn in conditions of Mn limitation, thus demonstrating that NRAMP1 is the major high-affinity Mn transporter in Arabidopsis. Based on confocal microscopy observation of an NRAMP1-green fluorescent protein fusion, we established that NRAMP1 is localized to the plasma membrane. Consistent with its function in Mn acquisition from the soil, NRAMP1 expression is restricted to the root and stimulated by Mn deficiency. Finally, we show that NRAMP1 restores the capacity of the iron-regulated transporter1 mutant to take up iron and cobalt, indicating that NRAMP1 has a broad selectivity in vivo. The role of transporters of the NRAMP family is well established in higher eukaryotes for iron but has been controversial for Mn. This study demonstrates that NRAMP1 is a physiological manganese transporter in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Cátions/metabolismo , Manganês/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Cobalto/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Ferro/metabolismo , Mutagênese Insercional , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
15.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299639

RESUMO

In the context of the widespread distribution of zero valent iron nanoparticles (nZVI) in the environment and its possible exposure to many aquatic and terrestrial organisms, this study investigates the effects, uptake, bioaccumulation, localisation and possible transformations of nZVI in two different forms (aqueous dispersion-Nanofer 25S and air-stable powder-Nanofer STAR) in a model plant-Arabidopsis thaliana. Seedlings exposed to Nanofer STAR displayed symptoms of toxicity, including chlorosis and reduced growth. At the tissue and cellular level, the exposure to Nanofer STAR induced a strong accumulation of Fe in the root intercellular spaces and in Fe-rich granules in pollen grains. Nanofer STAR did not undergo any transformations during 7 days of incubation, while in Nanofer 25S, three different behaviours were observed: (i) stability, (ii) partial dissolution and (iii) the agglomeration process. The size distributions obtained by SP-ICP-MS/MS demonstrated that regardless of the type of nZVI used, iron was taken up and accumulated in the plant, mainly in the form of intact nanoparticles. The agglomerates created in the growth medium in the case of Nanofer 25S were not taken up by the plant. Taken together, the results indicate that Arabidopsis plants do take up, transport and accumulate nZVI in all parts of the plants, including the seeds, which will provide a better understanding of the behaviour and transformations of nZVI once released into the environment, a critical issue from the point of view of food safety.

16.
J Biol Chem ; 286(32): 27863-6, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21719700

RESUMO

Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.


Assuntos
Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Ferro/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Solanum lycopersicum/metabolismo , Espectrometria por Raios X
17.
Proc Natl Acad Sci U S A ; 106(38): 16180-4, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805277

RESUMO

Nicotianamine (NA), a small molecule ubiquitous in plants, is an important divalent metal chelator and the main precursor of phytosiderophores. Nicotianamine synthase (NAS) is the enzyme catalyzing NA synthesis by the condensation of three aminopropyl moieties of S-adenosylmethionine (SAM) and the cyclization of one of them to form an azetidine ring. Here we report five crystal structures of an archaeal NAS from Methanothermobacter thermautotrophicus, either free or in complex with its product(s) and substrate(s). These structures reveal a two-domains fold arrangement of MtNAS, a small molecule related to NA (named here thermoNicotianamine or tNA), and an original mechanism of synthesis in a buried reaction chamber. This reaction chamber is open to the solvent through a small inlet, and a single active site allows the selective entrance of only one substrate at a time that is then processed and translocated stepwise.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Methanobacteriaceae/enzimologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo , Sítios de Ligação/genética , Catálise , Cristalografia por Raios X , Ciclização , Ligação de Hidrogênio , Espectrometria de Massas , Methanobacteriaceae/genética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Plant Direct ; 6(11): e463, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36405511

RESUMO

Iron (Fe) is an essential metal ion that plays a major role as a cofactor in many biological processes. The balance between the Fe2+ and Fe3+ forms is central for cellular Fe homeostasis because it regulates its transport, utilization, and storage. Contrary to Fe3+ reduction that is crucial for Fe uptake by roots in deficiency conditions, ferroxidation has been much less studied. In this work, we have focused on the molecular characterization of two members of the MultiCopper Oxidase family (MCO1 and MCO3) that share high identity with the Saccharomyces cerevisiae ferroxidase Fet3. The heterologous expression of MCO1 and MCO3 restored the growth of the yeast fet3fet4 mutant, impaired in high and low affinity Fe uptake and otherwise unable to grow in Fe deficient media, suggesting that MCO1 and MCO3 were functional ferroxidases. The ferroxidase enzymatic activity of MCO3 was further confirmed by the measurement of Fe2+-dependent oxygen consumption, because ferroxidases use oxygen as electron acceptor to generate water molecules. In planta, the expression of MCO1 and MCO3 was induced by increasing Fe concentrations in the medium. Promoter-GUS reporter lines showed that MCO1 and MCO3 were mostly expressed in shoots and histochemical analyses further showed that both promoters were highly active in mesophyll cells. Transient expression of MCO1-RFP and MCO3-RFP in tobacco leaves revealed that both proteins were localized in the apoplast. Moreover, cell plasmolysis experiments showed that MCO1 remained closely associated to the plasma membrane whereas MCO3 filled the entire apoplast compartment. Although the four knock out mutant lines isolated (mco1-1, mco1-2, mco3-1, and mco3-2) did not display any macroscopic phenotype, histochemical staining of Fe with the Perls/DAB procedure revealed that mesophyll cells of all four mutants overaccumulated Fe inside the cells in Fe-rich structures in the chloroplasts, compared with wild-type. These results suggested that the regulation of Fe transport in mesophyll cells had been disturbed in the mutants, in both standard condition and Fe excess. Taken together, our findings strongly suggest that MCO1 and MCO3 participate in the control of Fe transport in the mesophyll cells, most likely by displacing the Fe2+/Fe3+ balance toward Fe3+ in the apoplast and therefore limiting the accumulation of Fe2+, which is more mobile and prone to be transported across the plasma membrane.

19.
Plant Physiol ; 151(3): 1329-38, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19726572

RESUMO

Deciphering how cellular iron (Fe) pools are formed, where they are localized, and which ones are remobilized represents an important challenge to better understand Fe homeostasis. The recent development of imaging techniques, adapted to plants, has helped gain insight into these events. We have analyzed the localization of Fe during embryo development in Arabidopsis (Arabidopsis thaliana) with an improved histochemical staining based on Perls coloration intensified by a second reaction with diaminobenzidine and hydrogen peroxide. The procedure, quick to set up and specific for Fe, was applied directly on histological sections, which dramatically increased its subcellular resolution. We have thus unambiguously shown that in dry seeds Fe is primarily stored in the endodermis cell layer, within the vacuoles, from which it is remobilized during germination. In the vit1-1 mutant, in which the Fe pattern is disturbed, Fe is stored in vacuoles of cortex cells of the hypocotyl/radicle axis and in a single subepidermal cell layer in the cotyledons. During the early stages of embryo development, Fe is evenly distributed in the cells of both wild-type and vit1-1 mutants. Fe eventually accumulates in endodermal cells as the vascular system develops, a process that is impaired in vit1-1. Our results have uncovered a new role for the endodermis in Fe storage in the embryo and have established that the Perls/diaminobenzidine staining is a method of choice to detect Fe in plant tissues and cells.


Assuntos
Arabidopsis/metabolismo , Ferro/metabolismo , Sementes/crescimento & desenvolvimento , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Endoderma/crescimento & desenvolvimento , Endoderma/metabolismo , Germinação , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Coloração e Rotulagem
20.
Biochem J ; 422(2): 217-28, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19545236

RESUMO

NRAMP (natural resistance-associated macrophage protein) homologues are evolutionarily conserved bivalent metal transporters. In Arabidopsis, AtNRAMP3 and AtNRAMP4 play a key role in iron nutrition of the germinating plantlet by remobilizing vacuolar iron stores. In the present paper we describe the molecular and physiological characterization of AtNRAMP6. AtNRAMP6 is predominantly expressed in the dry seed embryo and to a lesser extent in aerial parts. Its promoter activity is found diffusely distributed in cotyledons and hypocotyl, as well as in the vascular tissue region of leaf and flower. We show that the AtNRAMP6 transcript coexists with a partially spliced isoform in all shoot cell types tested. When expressed in yeast, AtNRAMP6, but not its misspliced derivative, increased sensitivity to cadmium without affecting cadmium content in the cell. Likewise, Arabidopsis transgenic plants overexpressing AtNRAMP6 were hypersensitive to cadmium, although plant cadmium content remained unchanged. Consistently, a null allele of AtNRAMP6, named nramp6-1, was more tolerant to cadmium toxicity, a phenotype that was reverted by expressing AtNRAMP6 in the mutant background. We used an AtNRAMP6::HA (where HA is haemagglutinin) fusion, shown to be functional in yeast, to demonstrate through immunoblot analysis of membrane fractions and immunofluorescence localization that, in yeast cells, AtNRAMP6 is targeted to a vesicular-shaped endomembrane compartment distinct from the vacuole or mitochondria. We therefore propose that AtNRAMP6 functions as an intracellular metal transporter, whose presence, when modified, is likely to affect distribution/availability of cadmium within the cell.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cádmio/toxicidade , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Sequência de Bases , Intoxicação por Cádmio/metabolismo , Dados de Sequência Molecular , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA