Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 217, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674160

RESUMO

Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética
2.
Expert Opin Med Diagn ; 2(3): 315-22, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23495661

RESUMO

BACKGROUND: Nanotechnology is an emerging field that could have a significant impact on cancer diagnosis, treatment and analysis. Quantum dots represent one of the most interesting nanotechnology-based platforms, and their unique properties make them a potentially versatile tool for molecular diagnostics. OBJECTIVES: Here, the most promising uses of quantum dots for translational research are reviewed, ranging from multiplexed immunofluorescence, targeted drug delivery coupled with disease visualization, tumor and sentinel organs localization and long-term cell tracing. Finally, potential future directions for quantum dots as both a diagnostic and therapeutic tool in biomedical research will be explored. CONCLUSIONS: The use of quantum dots in biomedical applications is accelerating owing to their unique physical attributes, imaging capabilities, and potential for therapeutic delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA