Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Carcinogenesis ; 31(10): 1882-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20643754

RESUMO

The radiation-induced bystander effect (RIBE) is a phenomenon whereby unexposed cells exhibit molecular symptoms of stress exposure when adjacent or nearby cells are traversed by ionizing radiation (IR). Recent data suggest that RIBE may be epigenetically mediated by microRNAs (miRNAs), which are small regulatory molecules that target messenger RNA transcripts for translational inhibition. Here, we analyzed microRNAome changes in bystander tissues after α-particle microbeam irradiation of three-dimensional artificial human tissues using miRNA microarrays. Our results indicate that IR leads to a deregulation of miRNA expression in bystander tissues. We report that major bystander end points, including apoptosis, cell cycle deregulation and DNA hypomethylation, may be mediated by altered expression of miRNAs. Specifically, c-MYC-mediated upregulation of the miR-17 family was associated with decreased levels of E2F1 and RB1, suggesting a switch to a proliferative state in bystander tissues, while priming these cells for impending death signals. Upregulation of the miR-29 family resulted in decreased levels of its targets DNMT3a and MCL1, consequently affecting DNA methylation and apoptosis. Altered expression of miR-16 led to changes in expression of BCL2, suggesting modulation of apoptosis. Thus, our data clearly show that miRNAs play a profound role in the manifestation of late RIBE end points. In summary, this study creates a roadmap for understanding the role of microRNAome in RIBE and for developing novel RIBE biomarkers.


Assuntos
Apoptose , Efeito Espectador/efeitos da radiação , MicroRNAs/fisiologia , Mapeamento Cromossômico , Fator de Transcrição E2F1/fisiologia , Genes myc , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/análise
2.
Cancer Res ; 67(9): 4295-302, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483342

RESUMO

The "radiation-induced bystander effect," in which irradiated cells can induce genomic instability in unirradiated neighboring cells, has important implications for cancer radiotherapy and diagnostic radiology as well as for human health in general. Although the mechanisms of this effect remain to be elucidated, we reported previously that DNA double-strand breaks (DSBs), directly measured by gamma-H2AX focus formation assay, are induced in bystander cultured cells. To overcome the deficiencies of cultured cell studies, we examined alpha-particle microbeam irradiation-induced bystander effects in human tissue models, which preserve the three-dimensional geometric arrangement and communication of cells present in tissues in vivo. In marked contrast to DNA DSB dynamics in irradiated cells, in which maximal DSB formation is seen 30 min after irradiation, the incidence of DSBs in bystander cells reached a maximum by 12 to 48 h after irradiation, gradually decreasing over the 7-day time course. At the maxima, 40% to 60% of bystander cells were affected, a 4- to 6-fold increase over controls. These increases in bystander DSB formation were followed by increased levels of apoptosis and micronucleus formation, by loss of nuclear DNA methylation, and by an increased fraction of senescent cells. These findings show the involvement of DNA DSBs in tissue bystander responses and support the notion that bystander DNA DSBs are precursors to widespread downstream effects in human tissues. Bystander cells exhibiting postirradiation signs of genomic instability may be more prone than unaffected cells to become cancerous. Thus, this study points to the importance of considering the indirect biological effects of radiation in cancer risk assessment.


Assuntos
Partículas alfa , Dano ao DNA , DNA/efeitos da radiação , Apoptose/efeitos da radiação , Brônquios/citologia , DNA/genética , Metilação de DNA/efeitos da radiação , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Histonas/genética , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Técnicas de Cultura de Tecidos , Traqueia/citologia
3.
Radiat Prot Dosimetry ; 126(1-4): 278-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17522030

RESUMO

The latest advances in the development of a fluorescent nuclear track detector (FNTD) for neutron and heavy charged particle dosimetry are described and compared with CR-39 plastic nuclear etched track detectors (PNTDs). The technique combines a new luminescent aluminium oxide single crystal detector (Al(2)O(3):C,Mg) with an imaging technique based on laser scanning and confocal fluorescence detection. Detection efficiency was obtained after irradiations with monoenergetic neutron and proton beams. Dose dependences were measured for different configurations of the detectors exposed in fast- and thermal-neutron fields. A specially developed image processing technique allows for fast fluorescent track identification and counting. The readout method is non-destructive, and detectors can be reused after thermal annealing.


Assuntos
Óxido de Alumínio/efeitos da radiação , Transferência Linear de Energia , Nêutrons , Óptica e Fotônica/instrumentação , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Espectrometria de Fluorescência/instrumentação , Dosimetria Termoluminescente/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos , Dosimetria Termoluminescente/métodos
4.
Radiat Res ; 187(4): 413-423, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28140790

RESUMO

The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 µm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly.


Assuntos
Biofísica/história , Aceleradores de Partículas/história , Radiobiologia/história , Animais , Biofísica/instrumentação , História do Século XX , História do Século XXI , Humanos , Nêutrons , Aceleradores de Partículas/instrumentação , Radiobiologia/instrumentação , Radiometria/história , Estados Unidos
5.
Radiat Res ; 187(4): 465-475, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28211757

RESUMO

Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.


Assuntos
Modelos Teóricos , Armas Nucleares , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Liberação Nociva de Radioativos , Radiometria/métodos , Animais , Sangue/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Nêutrons
6.
Radiat Res ; 164(5): 655-61, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16238443

RESUMO

The cellular response to ionizing radiation is not limited to cells irradiated directly but can be demonstrated in neighboring "bystander" populations. The ability of mouse embryonic stem (ES) cells to express a bystander effect and the role of the radioresistance gene Rad9 were tested. Mouse ES cells differing in Rad9 status were exposed to broad-beam 125 keV/ microm 3He alpha particles. All populations, when confluent, demonstrated a dose-independent bystander effect with respect to cell killing, and the Rad9-/- genotype did not selectively alter that response or cell killing after direct exposure to this high-LET radiation. In contrast, relative to Rad9+/+ cells, the homozygous mutant was sensitive to direct exposure to alpha particles when in log phase, providing evidence of a role for Rad9 in repair of potentially lethal damage. Direct exposure to alpha particles induced an increase in the frequency of apoptosis and micronucleus formation, regardless of Rad9 status, although the null mutant showed high spontaneous levels of both end points. All populations demonstrated alpha-particle-induced bystander apoptosis, but that effect was most prominent in Rad9-/- cells. Minimal alpha-particle induction of micronuclei in bystander cells was observed, except for the Rad9-/- mutant, where a significant increase above background was detected. Therefore, the Rad9 null mutation selectively sensitizes mouse ES cells to spontaneous and high-LET radiation-induced bystander apoptosis and micronucleus formation, but it has much less impact on cell killing by direct or bystander alpha-particle exposure. Results are presented in the context of defining the function of Rad9 in the cellular response to radiation and its differential effects on individual bystander end points.


Assuntos
Efeito Espectador/efeitos da radiação , Proteínas de Ciclo Celular/fisiologia , Partículas alfa , Animais , Apoptose/efeitos da radiação , Dano ao DNA , Camundongos , Micronúcleos com Defeito Cromossômico/efeitos da radiação
7.
Nucl Instrum Methods Phys Res A ; 794: 234-239, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26273118

RESUMO

A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

8.
Nucl Med Biol ; 42(6): 515-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25800676

RESUMO

INTRODUCTION: Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. METHODS: We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by (213)Bi-labeled monoclonal antibodies), and sparsely-ionizing (137)Cs γ-rays, on Cryptococcus neoformans. RESULTS: The best-fit linear-quadratic parameters for clonogenic survival were the following: α = 0.24 × 10(-2) Gy(-1) for γ-rays and 1.07 × 10(-2) Gy(-1) for external-beam α-particles, and ß = 1.44 × 10(-5) Gy(-2) for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs. γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. CONCLUSIONS: These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies.


Assuntos
Partículas alfa , Anticorpos Monoclonais/farmacologia , Morte Celular/efeitos da radiação , Núcleo Celular/efeitos da radiação , Cryptococcus neoformans/efeitos da radiação , Raios gama , Tolerância a Radiação , Bismuto/farmacologia , Cryptococcus neoformans/crescimento & desenvolvimento , Relação Dose-Resposta à Radiação , Humanos , Polissacarídeos/imunologia
9.
Radiat Res ; 184(4): 404-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26414507

RESUMO

We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.


Assuntos
Modelos Biológicos , Nêutrons , Guerra Nuclear , Animais , Humanos , Testes para Micronúcleos
10.
J Instrum ; 7(3)2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22545061

RESUMO

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

11.
Health Phys ; 100(5): 542-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21451325

RESUMO

Preliminary results are presented for a personal radiation dosimeter in the form of a clothing button to provide gamma-ray dose estimation for clinically-significant external radiation exposures to the general public due to a radiological incident, such as use of a radiological dispersal device. Rods of thermoluminescent material (LiF:Mg,Ti and LiF:Mg,Cu,P) were encapsulated in plastic "buttons," attached to shirts, and subjected to three cycles of home or commercial laundering or dry cleaning, including ironing or pressing. The buttons were subsequently exposed to doses of 137Cs gamma rays ranging from 0.75 to 8.2 Gy. The rods were removed from the buttons and their light output compared to their responses when bare or to the responses of a set of calibration rods of the same type and from the same manufacturer. In all three of the comparisons for LiF:Mg,Ti rods, the relative responses of the rods in buttons changed by 2-6% relative to the same rods before cleaning. In both comparisons for LiF:Mg,Cu,P rods, the response of laundered rods was 1-3% lower than for the same rods before cleaning. Both these materials are potential candidates for button dosimeters.


Assuntos
Dosimetria Termoluminescente/métodos , Vestuário , Raios gama , Humanos
12.
Radiat Prot Dosimetry ; 145(4): 373-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21131327

RESUMO

A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.


Assuntos
Efeito Espectador , Nêutrons , Aceleradores de Partículas/instrumentação , Doses de Radiação , Efeito Espectador/efeitos da radiação , Desenho de Equipamento , Prótons
13.
Nucl Instrum Methods Phys Res A ; 609(2): 294-299, 2009 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20161365

RESUMO

A lens system consisting of two electrostatic quadrupole triplets has been designed and constructed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The lens system has been used to focus 6-MeV (4)He ions to a beam spot in air with a diameter of 0.8 µm. The quadrupole electrodes can withstand voltages high enough to focus (4)He ions up to 10 MeV and protons up to 5 MeV. The quadrupole triplet design is novel in that alignment is made through precise construction and the relative strengths of the quadrupoles are accomplished by the lengths of the elements, so that the magnitudes of the voltages required for focusing are nearly identical. The insulating sections between electrodes have had ion implantation to improve the voltage stability of the lens. The lens design employs Russian symmetry for the quadrupole elements.

14.
Proc Natl Acad Sci U S A ; 102(40): 14203-8, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16162670

RESUMO

A central tenet in understanding the biological effects of ionizing radiation has been that the initially affected cells were directly damaged by the radiation. By contrast, evidence has emerged concerning "bystander" responses involving damage to nearby cells that were not themselves directly traversed by the radiation. These long-range effects are of interest both mechanistically and for assessing risks from low-dose exposures, where only a small proportion of cells are directly hit. Bystander effects have been observed largely by using single-cell in vitro systems that do not have realistic multicellular morphology; no studies have as yet been reported in three-dimensional, normal human tissue. Given that the bystander phenomenon must involve cell-to-cell interactions, the relevance of such single-cell in vitro studies is questionable, and thus the significance of bystander responses for human health has remained unclear. Here, we describe bystander responses in a three-dimensional, normal human-tissue system. Endpoints were induction of micronucleated and apoptotic cells. A charged-particle microbeam was used, allowing irradiation of cells in defined locations in the tissue yet guaranteeing that no cells located more than a few micrometers away receive any radiation exposure. Unirradiated cells up to 1 mm distant from irradiated cells showed a significant enhancement in effect over background, with an average increase in effect of 1.7-fold for micronuclei and 2.8-fold for apoptosis. The surprisingly long range of bystander signals in human tissue suggests that bystander responses may be important in extrapolating radiation risk estimates from epidemiologically accessible doses down to very low doses where nonhit bystander cells will predominate.


Assuntos
Partículas alfa/efeitos adversos , Dano ao DNA , Queratinócitos/efeitos da radiação , Apoptose/efeitos da radiação , Humanos , Queratinócitos/patologia , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA