Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 38(3): e25003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291818

RESUMO

BACKGROUND: Point-of-care tests (POCTs) may have a role in detecting undiagnosed cases of Celiac disease (CD). We assessed the diagnostic accuracy of a novel POCT, compared with the conventional serological methods, for simultaneous anti-transglutaminase (tTG) IgA and anti-deamidated gliadin (DGP) IgG antibody detection. Furthermore, we evaluated the effect of different biological matrices (whole blood and serum) on test performance. METHODS: Serum and whole blood from celiac or suspected celiac patients who underwent duodenal biopsy were assayed for the presence of anti-tTG IgA and anti-DGP IgG both with the reference standard methods (Thermo Fisher Scientific, Uppsala, Sweden) and with the POCT (PRIMA Lab SA, Balerna, Switzerland). RESULTS: 266 sera (101 negative and 165 positive) and 60 whole blood samples (34 positive and 26 negative) were included in the study. POCT for anti-DGP IgG showed a sensitivity of 84.3% and a specificity of 90.1%, with positive (PPV) and negative predictive values (NPV) of 91.07% and 82.73%. POCT for anti-tTG IgA showed a sensitivity of 98.31% and a specificity of 98.02%, with a PPV and NPV of 98.31% and 98.02%. Test accuracies were 86.94% and 98.17%, respectively. The agreement of the results between the two different matrices showed a strong correlation rate: 95% for anti-DGP IgG and 100% for anti-tTG IgA. CONCLUSION: The anti-tTG IgA/anti-DGP IgG-based POCT showed good diagnostic accuracy with comparable sensitivities and specificities to reference standard methods in detecting CD in symptomatic patients and could be considered as a mass screening test before referring to conventional serology.


Assuntos
Doença Celíaca , Transglutaminases , Humanos , Gliadina , Imunoglobulina A , Imunoglobulina G , Sensibilidade e Especificidade , Doença Celíaca/diagnóstico , Testes Imediatos , Autoanticorpos
2.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218125

RESUMO

Multiplex lateral flow immunoassay (LFIA) is largely used for point-of-care testing to detect different pathogens or biomarkers in a single device. The increasing demand for multitargeting diagnostics requires multi-informative single tests. In this study, we demonstrated three strategies to upgrade standard multiplex LFIA to multimodal capacity. As a proof-of-concept, we applied the strategies to the differential diagnosis of Human Immunodeficiency Virus (HIV) infection, a widespread pathogen, for which conventional multiplex LFIA testing is well-established. In the new two-parameter LFIA (x2LFIA), we exploited color encoding, in which the binding of multiple targets occurs in one reactive band and the color of the probe reveals which one is present in the sample. By combining the sequential alignment of several reactive zones along the membrane of the LFIA strip and gold nanoparticles and gold nanostars for the differential visualization, in this demonstration, the x2LFIA can furnish information on HIV serotype and stage of infection in a single device. Three immunosensors were designed. The use of bioreagents as the capturing ligand anchored onto the membrane or as the detection ligand labelled with gold nanomaterials affected the performance of the x2LFIA. Higher detectability was achieved by the format involving the HIV-specific antigens as capturing agent and labelled secondary bioligands (anti-human immunoglobulins M and protein G) as the probes.


Assuntos
Técnicas Biossensoriais , Colorimetria , Infecções por HIV/diagnóstico , Imunoensaio , Nanopartículas Metálicas , Ouro , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA