Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Lipid Res ; 65(6): 100560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750995

RESUMO

Zinc is required for virtually all biological processes. In plasma, Zn2+ is predominantly transported by human serum albumin (HSA), which possesses two Zn2+-binding sites of differing affinities (sites A and B). Fatty acids (FAs) are also transported by HSA, with seven structurally characterized FA-binding sites (named FA1-FA7) known. FA binding inhibits Zn2+-HSA interactions, in a manner that can impact upon hemostasis and cellular zinc uptake, but the degree to which binding at specific FA sites contributes to this inhibition is unclear. Wild-type HSA and H9A, H67A, H247A, and Y150F/R257A/S287A (FA2-KO) mutant albumins were expressed in Pichia pastoris. Isothermal titration calorimetry studies revealed that the Zn2+-binding capacity at the high-affinity Zn2+ site (site A) was reduced in H67A and H247A mutants, with site B less affected. The H9A mutation decreased Zn2+ binding at the lower-affinity site, establishing His9 as a site B ligand. Zn2+ binding to HSA and H9A was compromised by palmitate, consistent with FA binding affecting site A. 13C-NMR experiments confirmed that the FA2-KO mutations prohibited FA binding at site FA2. Zn2+ binding to the FA2-KO mutant was unaffected by myristate, suggesting binding at FA2 is solely responsible for inhibition. Molecular dynamics studies identified the steric obstruction exerted by bound FA in site FA2, which impedes the conformational change from open (FA-loaded) to closed (FA-free) states, required for Zn2+ to bind at site A. The successful targeting of the FA2 site will aid functional studies exploring the interplay between circulating FA levels and plasma Zn2+ speciation in health and disease.


Assuntos
Ácidos Graxos , Albumina Sérica Humana , Zinco , Zinco/metabolismo , Humanos , Sítios de Ligação , Ácidos Graxos/metabolismo , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Ligação Proteica
2.
Neural Comput ; : 1-23, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177964

RESUMO

Von Neumann architecture requires information to be encoded as numerical values. For that reason, artificial neural networks running on computers require the data coming from sensors to be discretized. Other network architectures that more closely mimic biological neural networks (e.g., spiking neural networks) can be simulated on von Neumann architecture, but more important, they can also be executed on dedicated electrical circuits having orders of magnitude less power consumption. Unfortunately, input signal conditioning and encoding are usually not supported by such circuits, so a separate module consisting of an analog-to-digital converter, encoder, and transmitter is required. The aim of this letter is to propose a sensor architecture, the output signal of which can be directly connected to the input of a spiking neural network. We demonstrate that the output signal is a valid spike source for the Izhikevich model neurons, ensuring the proper operation of a number of neurocomputational features. The advantages are clear: much lower power consumption, smaller area, and a less complex electronic circuit. The main disadvantage is that sensor characteristics somehow limit the parameters of applicable spiking neurons. The proposed architecture is illustrated by a case study involving a capacitive pressure sensor circuit, which is compatible with most of the neurocomputational properties of the Izhikevich neuron model. The sensor itself is characterized by very low power consumption: it draws only 3.49 µA at 3.3 V.

3.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125791

RESUMO

In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.


Assuntos
Carotenoides , Bicamadas Lipídicas , Carotenoides/química , Carotenoides/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Modelos Moleculares , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química
4.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960526

RESUMO

Petri nets (PNs) have many advantages such as graphical representation, formal description, and the possibility of sequential and concurrent control. An important aspect of using PNs is hierarchical modeling, which may be provided in different ways. In this paper, a new concept and definition of the hierarchical structure for Fuzzy Interpreted Petri Net (FIPN) are proposed. The concept of macroplace with several input, output, and input-output places is introduced to the net. The functionality of the macroplace instances and the hierarchy graph are also proposed. They are implemented in a computer simulator called HFIPN-SML. In this study, FIPN is employed since it allows the use of analogue sensors directly for process control. Better visualization and more precise control are among advantages of the introduced approach.


Assuntos
Algoritmos
5.
Clin Genet ; 98(5): 468-476, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32725661

RESUMO

PIGT is one of over 29 glycosylphosphatidylinositol biosynthesis defect genes. Mutations cause genetically determined disorders characterized mainly by epilepsy with fever-sensitivity, central hypotonia, psychomotor delay and congenital malformations. The disease is known as multiple congenital anomalies-hypotonia-seizures syndrome 3 (MCAHS3) or glycosylphosphatidylinositol biosynthesis defect-7. Twenty-eight cases have been reported until today. We present seven novel Polish patients, all harboring 1582G>A variant in a homozygous or compound heterozygous state which seems to cause a milder phenotype of the disease.


Assuntos
Aciltransferases/genética , Epilepsia/genética , Glicosilfosfatidilinositóis/deficiência , Deficiência Intelectual/genética , Transtornos Psicomotores/genética , Convulsões/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/complicações , Epilepsia/patologia , Feminino , Citometria de Fluxo , Glicosilfosfatidilinositóis/genética , Homozigoto , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Mutação/genética , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Fenótipo , Polônia , Transtornos Psicomotores/patologia , Convulsões/complicações , Convulsões/patologia
6.
Cancer Cell Int ; 19: 292, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754349

RESUMO

BACKGROUND/AIM: During cancer progression metabolic reprogramming is observed in parallel to the alternation in transcriptional profiles of malignant cells. Recent studies suggest that metabolic isoenzymes of phosphofructokinase II (PFK-II) - PFKFB3 and PFKFB4, often induced in hypoxic environment, significantly contribute to enhancement of glucose metabolism and in consequence cancer progression. MATERIALS AND METHODS: Using the publicly available data deposited in the R2 data base we performed a Kaplan-Meyer analysis for cancer patients divided into groups with high and low expression levels of PFKFB3/4, determined based on the median. RESULTS: Our data showed that high PFKFB3/4 expression significantly correlates with shorter overall survival in several cancers. Moreover, we found that neuroblastoma patients with poor overall survival and evidence free survival are characterized by high PFKFB3 and at the same time low PFKFB4 expression, whereas patients with high PFKFB4 expressions are characterized by significantly better overall survival/evidence free survival rates. CONCLUSION: Our analysis clearly indicates that expression of PFKFB3/4 isoenzymes may have a key prognostic value for several cancers. What's more, it seems that in neuroblastoma the prognostic value of PFK-II may be dependent on the relation between PFKFB3 and PFKFB4 isoenzyme expression, indicating that further studies analyzing the role of both cancer specific PFK-II isoenzymes are highly desired.

7.
Biochim Biophys Acta ; 1858(10): 2305-2321, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26825705

RESUMO

This review summarises high resolution studies on the interface of lamellar lipid bilayers composed of the most typical lipid molecules which constitute the lipid matrix of biomembranes. The presented results were obtained predominantly by computer modelling methods. Whenever possible, the results were compared with experimental results obtained for similar systems. The first and main section of the review is concerned with the bilayer-water interface and is divided into four subsections. The first describes the simplest case, where the interface consists only of lipid head groups and water molecules and focuses on interactions between the lipid heads and water molecules; the second describes the interface containing also mono- and divalent ions and concentrates on lipid-ion interactions; the third describes direct inter-lipid interactions. These three subsections are followed by a discussion on the network of direct and indirect inter-lipid interactions at the bilayer interface. The second section summarises recent computer simulation studies on the interactions of antibacterial membrane active compounds with various models of the bacterial outer membrane. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Assuntos
Simulação por Computador , Bicamadas Lipídicas/química , Água/química , Ligação de Hidrogênio , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Esfingomielinas/química
8.
Biochim Biophys Acta ; 1830(4): 2899-906, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23295968

RESUMO

BACKGROUND: Chloroplasts were formed by uptake of cyanobacteria into eukaryotic cells ca. 1.6 billion years ago. During evolution most of the cyanobacterial genes were transferred from the chloroplast to the nuclear genome. The rbcX gene, encoding an assembly chaperone required for Rubisco biosynthesis in cyanobacteria, was duplicated. Here we demonstrate that homologous eukaryotic chaperones (AtRbcX1 and AtRbcX2) demonstrate different affinities for the C-terminus of Rubisco large subunit and determine their crystal structures. METHODS: Three-dimensional structures of AtRbcX1 and AtRbcX2 were resolved by the molecular replacement method. Equilibrium binding constants of the C-terminal RbcL peptide by AtRbcX proteins were determined by spectrofluorimetric titration. The binding mode of RbcX-RbcL was predicted using molecular dynamic simulation. RESULTS: We provide crystal structures of both chaperones from Arabidopsis thaliana providing the first structural insight into Rubisco assembly chaperones form higher plants. Despite the low sequence homology of eukaryotic and cyanobacterial Rubisco chaperones the eukaryotic counterparts exhibit surprisingly high similarity of the overall fold to previously determined prokaryotic structures. Modeling studies demonstrate that the overall mode of the binding of RbcL peptide is conserved among these proteins. As such, the evolution of RbcX chaperones is another example of maintaining conserved structural features despite significant drift in the primary amino acid sequence. GENERAL SIGNIFICANCE: The presented results are the approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Cloroplastos/química , Chaperonas Moleculares/química , Ribulose-Bifosfato Carboxilase/química , Sequência de Aminoácidos , Cristalização , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
9.
iScience ; 26(10): 107863, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766978

RESUMO

The lipid matrix of thylakoid membranes is a lamellar bilayer, but under a certain condition it can convert locally into a nonlamellar structure. This is possible because one of the main membrane lipids, MGDG, promotes the formation of an inverse hexagonal phase. Here, the spontaneous transformation of aligned hydrated MGDG bilayers into nonlamellar structures is investigated using all-atom molecular dynamics simulation. Previous studies have demonstrated that MGDG polar head groups connect vertically across the interface. In this study, the evolution of the system's initial structure into a lattice of water channels and contacted surfaces created by numerous vertical MGDG connections depended on the width of the hydrating water layers. These widths controlled the bilayers' ability to bend, which was a prerequisite for channel formation. Locally, an intensive exchange of MGDG molecules between apposing bilayer leaflets occurred, although a stable semi-toroidal stalk did not develop.

10.
Cancers (Basel) ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36765875

RESUMO

Vemurafenib and dabrafenib are BRAF kinase inhibitors (BRAFi) used for the treatment of patients with melanoma carrying the V600E BRAF mutation. However, melanoma cells develop resistance to both drugs when used as monotherapy. Therefore, mechanisms of drug resistance are investigated, and new molecular targets are sought that could completely inhibit melanoma progression. Since receptor-interacting protein kinase (RIPK4) probably functions as an oncogene in melanoma and its structure is similar to the BRAF protein, we analyzed the impact of vemurafenib and dabrafenib on RIPK4 in melanomas. The in silico study confirmed the high similarity of BRAF kinase domains to the RIPK4 protein at both the sequence and structural levels and suggests that BRAFi could directly bind to RIPK4 even more strongly than to ATP. Furthermore, BRAFi inhibited ERK1/2 activity and lowered RIPK4 protein levels in BRAF-mutated melanoma cells (A375 and WM266.4), while in wild-type BRAF cells (BLM and LoVo), both inhibitors decreased the level of RIPK4 and enhanced ERK1/2 activity. The phosphorylation of phosphatidylethanolamine binding protein 1 (PEBP1)-a suppressor of the BRAF/MEK/ERK pathway-via RIPK4 observed in pancreatic cancer did not occur in melanoma. Neither downregulation nor upregulation of RIPK4 in BRAF- mutated cells affected PEBP1 levels or the BRAF/MEK/ERK pathway. The downregulation of RIPK4 inhibited cell proliferation and the FAK/AKT pathway, and increased BRAFi efficiency in WM266.4 cells. However, the silencing of RIPK4 did not induce apoptosis or necroptosis. Our study suggests that RIPK4 may be an off-target for BRAF inhibitors.

11.
Membranes (Basel) ; 13(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367779

RESUMO

Photoreceptor membranes have a unique lipid composition. They contain a high level of polyunsaturated fatty acids including the most unsaturated fatty acid in nature, docosahexaenoic acid (22:6), and are enriched in phosphatidylethanolamines. The phospholipid composition and cholesterol content of the subcellular components of photoreceptor outer segments enables to divide photoreceptor membranes into three types: plasma membranes, young disc membranes, and old disc membranes. A high degree of lipid unsaturation, extended exposure to intensive irradiation, and high respiratory demands make these membranes sensitive to oxidative stress and lipid peroxidation. Moreover, all-trans retinal (AtRAL), which is a photoreactive product of visual pigment bleaching, accumulates transiently inside these membranes, where its concentration may reach a phototoxic level. An elevated concentration of AtRAL leads to accelerated formation and accumulation of bisretinoid condensation products such as A2E or AtRAL dimers. However, a possible structural impact of these retinoids on the photoreceptor-membrane properties has not yet been studied. In this work we focused just on this aspect. The changes induced by retinoids, although noticeable, seem not to be significant enough to be physiologically relevant. This is, however, an positive conclusion because it can be assumed that accumulation of AtRAL in photoreceptor membranes will not affect the transduction of visual signals and will not disturb the interaction of proteins engaged in this process.

12.
Front Mol Biosci ; 9: 958537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046609

RESUMO

In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.

13.
Chem Phys Lipids ; 245: 105203, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398336

RESUMO

Lipids play a central role within the cell. They not only encompass it but are also engaged in many processes such as cellular transport and energy production. Despite ongoing advances in experimental studies, computer simulations are a viable method to trace their behavior at the atomic level and on an elusive time scale. In molecular modeling studies, the quality of the obtained results is associated with the considered force field and its parameters. In the present work, the authors have investigated the procedure of partial charges fitting on the example of a triacetin molecule, containing chemical moieties present in the glycerol backbone. The goal of the study was to validate assigned partial charges based on the quality of the torsion profiles using optimally assigned torsional coefficients and reproduction of the condensed phase properties of triacetin. We applied various approaches and noticed a significant improvement in the parameterization of triacetin compared to the original one. The results showed that it is important to take into account the intermolecular interactions in the partial charges fitting procedure to obtain good quality validation results.


Assuntos
Glicerol , Triacetina , Simulação por Computador , Modelos Moleculares , Reprodução
14.
Langmuir ; 27(11): 6950-61, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21568285

RESUMO

A high percentage of people treated with a long-term nonsteroidal anti-inflammatory drug (NSAID) therapy suffer NSAID-induced gastrointestinal-tract-related side effects. A current hypothesis states that the side effects are related to the topical action of NSAID molecules on gastric mucus that lowers its resistance to luminal acid. The main lipids in human mucus are palmitoyloleoylphosphatidylcholine (POPC) and cholesterol (Chol). In this study, both X-ray diffraction and molecular dynamics (MD) simulation methods were employed to investigate the effects of selected NSAIDs in protonated and deprotonated states on the structural parameters of a POPC-Chol bilayer. The drugs were three commonly used NSAIDs with apparently different gastric toxicity: ketoprofen (KET), aspirin (ASP), and piroxicam (PXM). Both methods revealed that the effects of the NSAIDs on the POPC-Chol bilayer parameters were moderate and only slightly differentiated among the drugs. Much larger differences among the drugs were noticed in their interactions with interfacial water and Na(+) as well as with the polar groups of POPC and Chol, mainly via H-bonds. Of the three NSAIDs, KET interacted with POPC and water the most extensively, whereas ASP interacted with Chol and Na(+) more than did the other two. Interactions of PXM with POPC and Chol polar groups as well as with water and Na(+) were limited.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Simulação de Dinâmica Molecular , Estômago/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Conformação Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Estômago/citologia , Água/química
15.
Data Brief ; 39: 107483, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712759

RESUMO

This data article contains partial charges generated for cholesterol, C7-hydroxycholesterol and C7-hydroperoxycholesterol and torsional parameters for hydroperoxy of C7-hydroperoxycholesterol for molecular dynamics simulations in the OPLSAA force field [1] using the package Gromacs [2]. The hydroperoxy group remained unparameterized in the OPLSAA force field and the parameters obtained have the potential for re-use in similar simulations. The atom-centred point charges on each sterol molecule were derived using the restrained electrostatic potential (RESP) approach [3]. The parameters for the C7-OET-OH-HO and C8-C7-OET-OH torsion angles were derived by fitting the parameters of the torsional term (Ryckaert-Bellemans function) of the OPLSAA potential energy function to the quantum mechanical rotational energy profile calculated at CCSD(T)/cc-pVQZ level of theory. This article presents data used in the research article "Chirality affects cholesterol-oxysterol association in water, a computational study" [4].

16.
Front Mol Biosci ; 8: 768449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765645

RESUMO

Lutein and zeaxanthin are two similar carotenoids of the xanthophyll subgroup. Carotenoids are synthesized almost entirely by plants but are also present in significant amounts in animals. They are essential components of the lipid matrix of biomembranes, and one of their functions is to protect cells from light radiation, free radicals and oxidative stress. Carotenoids, depending on their chemical structure, can locate at various positions and in different orientations in the bilayer. Xanthophylls (XAN) are polar and in the bilayer are positionally restricted. In the case of lutein and zeaxanthin, whose both ionone rings are hydroxy-substituted and as such are anchored in the lipid bilayer interfaces, the position is generally transmembrane. However, both experimental and computer modelling studies indicate that lutein can also locate horizontally below the bilayer interface. This location has never been observed for zeaxanthin. To find a molecular-level explanation for the difference in the orientations of the XAN molecules in the bilayer, a number of phosphatidylcholine-XAN bilayers were constructed and molecular dynamics (MD) simulated for 1.1 µs each. The all-trans XAN molecules were initially placed either parallel or perpendicular to the bilayer surface. With the exception of one lutein, the horizontally placed molecules adopted the transmembrane orientation within 100-600 ns. On the basis of detailed analyses of the XAN orientations and the numbers and lifetimes of their interactions in the bilayer, a plausible explanation is offered as to why a lutein molecule may remain in the horizontal orientation while zeaxanthin does not. Contrary to common believe, lutein horizontal orientation is not related to the ε-ring rotation around the C6'-C7' bond.

17.
Comput Struct Biotechnol J ; 19: 4319-4335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429850

RESUMO

Cholesterol (Chol) is the most prevalent sterol in the animal kingdom and an indispensable component of mammalian cell membranes. Chol content in the membrane is strictly controlled, although the oxidation of phospholipids may change the relative content of membrane Chol. An excess of it results in the formation of pure Chol microdomains in the membrane. It is likely that some Chol molecules detach from the domains and self-assemble in the aqueous environment. This may promote Chol microcrystallisation, which initiates the development of gallstones and atherosclerotic plaque. In this study, the molecular dynamics, free energy perturbation, umbrella sampling and Voronoi diagram methods are used to reveal the details of self-association of Chol and its oxidised forms (oxChol), namely 7α,ß-hydroxycholesterol and 7α,ß-hydroperoxycholesterol, in water. In the first part of the study the interactions between a sterol monomer and water over a short and longer timescale as well as the energy of hydration of each sterol are analysed. This helps one to understand Chol-Chol and Chol-OxChol with different chirality self-association in water better, which is analysed in the second part of the study. The Voronoi diagram approach is used to determine the relative arrangement of molecules in the dimer and, most importantly, to analyse the dehydration of the contacting surfaces of the assembling molecules. Free energy calculations indicate that Chol and 7ß-hydroxycholesterol associate into the most stable dimer and that Chol-Chol is the next most stable of the five dimers studied. Employing different computational methods enables us to obtain an adequate picture of Chol-sterol self-association in water, which includes dynamic, energetic and temporal aspects of the process.

18.
Membranes (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946822

RESUMO

Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid containing taurine conjugated with the ursodeoxycholic acid (UDCA), has been known and used from ancient times as a therapeutic compound in traditional Chinese medicine. TUDCA has recently been gaining significant interest as a neuroprotective agent, also exploited in the visual disorders. Among several mechanisms of TUDCA's protective action, its antioxidant activity and stabilizing effect on mitochondrial and plasma membranes are considered. In this work we investigated antioxidant activity of TUDCA and its impact on structural properties of model membranes of different composition using electron paramagnetic resonance spectroscopy and the spin labeling technique. Localization of TUDCA molecules in a pure POPC bilayer has been studied using a molecular dynamics simulation (MD). The obtained results indicate that TUDCA is not an efficient singlet oxygen (1O2 (1Δg)) quencher, and the determined rate constant of its interaction with 1O2 (1Δg) is only 1.9 × 105 M-1s-1. However, in lipid oxidation process induced by a Fenton reaction, TUDCA reveals substantial antioxidant activity significantly decreasing the rate of oxygen consumption in the system studied. In addition, TUDCA induces slight, but noticeable changes in the polarity and fluidity of the investigated model membranes. The results of performed MD simulation correspond very well with the experimental results.

19.
Anestezjol Intens Ter ; 41(3): 130-4, 2009.
Artigo em Polonês | MEDLINE | ID: mdl-19999598

RESUMO

BACKGROUND: Cardiac catheterisation, while enabling dynamic evaluation of the cardiovascular system, is also commonly performed for interventional procedures in all age groups. The aim of this study was to analyse the incidence and spectrum of complications occurring during general anaesthesia in children undergoing cardiac catheterisation. METHODS: We retrospectively reviewed the medical charts of 1622 consecutive patients, anaesthetised for 817 diagnostic, and 805 interventional cardiac procedures. Data on patient- and procedure-related variables affecting the risk of complications was collected. We analysed the influence of age, physical status, type of heart defect, type of procedure, and anaesthetic protocol on the incidence of complications. RESULTS: Serious complications occurred in 5 patients undergoing diagnostic procedures and in 24 undergoing interventional procedures, with infants being the most affected (21 cases). The most frequent complication was acute heart failure related to the catheterisation. In 2 cases, pneumothorax followed central venous catheter insertion. There were 14 cardiac arrests requiring cardiopulmonary resuscitation, resulting in three deaths. CONCLUSIONS: The results show that diagnostic cardiac catheterisation and interventional procedures are associated with a low risk of complications (1.78%) and a low mortality rate (0.18%).


Assuntos
Anestesia Geral/métodos , Cateterismo Cardíaco/efeitos adversos , Procedimentos Cirúrgicos Cardiovasculares/efeitos adversos , Cardiopatias Congênitas/fisiopatologia , Fatores Etários , Cateterismo Cardíaco/mortalidade , Reanimação Cardiopulmonar , Procedimentos Cirúrgicos Cardiovasculares/métodos , Procedimentos Cirúrgicos Cardiovasculares/mortalidade , Cateterismo Venoso Central/efeitos adversos , Criança , Parada Cardíaca/etiologia , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/etiologia , Humanos , Lactente , Pneumotórax/etiologia , Estudos Retrospectivos
20.
Comput Struct Biotechnol J ; 17: 516-526, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011410

RESUMO

Lutein, a hydroxylated carotenoid, is a pigment synthesised by plants and bacteria. Animals are unable to synthesise lutein, nevertheless, it is present in animal tissues, where its only source is dietary intake. Both in plants and animals, carotenoids are associated mainly with membranes where they carry out important physiological functions. Their trafficking to and insertion into membranes are not well recognised due to experimental difficulties. In this paper, a computational approach is used to elucidate details of the dynamics and energetics of lutein intercalation from the water to the phospholipid bilayer phase. The dynamics is studied using molecular dynamics simulation, and the energetics using umbrella sampling. Lutein spontaneous insertion into the bilayer and translocation across it proceed via formation of hydrogen bonds between its hydroxyl groups and water and/or phospholipid oxygen atoms as well as desolvation of its polyene chain. As lutein molecule is asymmetric, its bilayer intercalation is also asymmetric. The course of events and timescale of the intercalation are different from those of helical peptides. The time of full lutein intercalation ranges from 20 to 100 ns and its final orientation is predominately vertical. Nevertheless, some lutein molecules are in the final horizontal position and some aggregate in the water phase and remain there for the whole simulation time. The highest energy barrier for the intercalation process is ~2.2 kcal/mol and the energy gain is ~18 kcal/mol. The results obtained for lutein can be applied to other xanthophylls and molecules of a similar structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA