Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
J Am Chem Soc ; 146(28): 19590-19598, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957130

RESUMO

Metal radicals have shown versatile reactivity in modern synthetic chemistry. However, the use of zinc radicals for molecular synthesis has been barely explored. Here, we show that a transient zinc radical can be formed through photoactivation of a zinc-zinc bonded compound, which is able to mediate the selective dimerization of alkenes and allenes. Treatment of dizinc compounds [L2Zn2] [L = CH3C(2,6-iPr2C6H3N)CHC(CH3)(NCH2CH2PR2); R = Ph (LPh) or iPr (LiPr)] with a diverse array of aromatic alkenes under UV irradiation (365 nm) facilely afforded the head-to-head coupling products, i.e., 1,4-dizinciobutanes in high yields. In addition, arylallenes could also be selectively dimerized by the dizinc compound to give 2,5-dizincyl-functionalized 1,5-hexadienes under the same conditions. Control reactions of [LPh2Zn2] in the presence of UV irradiation isolated a zinc phenyl complex and a trimeric zinc phosphide complex resulting from C-P bond cleavage at the tridentate ligand. Reactions of photoactivated dizinc compounds with organic spin traps, i.e., 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 2,2'-bipyridine (2,2'-bpy), successfully isolated zinc radical trapping products [LZnOTEMP] and [LPhZn(2,2'-bpy)·-], respectively. The profile of alkene dimerization was elucidated by density functional theory calculations, which confirmed that a transient zinc radical [LZn·] was initially generated through homolytic Zn-Zn bond cleavage via photoactivation followed by single-electron transfer and radical dimerization. The unique selectivity of the current reaction was also studied computationally.

2.
J Am Chem Soc ; 146(2): 1257-1261, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38189272

RESUMO

Dihydrogen complexation, a phenomenon with robust precedent in the transition metal series, is spectroscopically detected for a uranium(III) complex and thereby extended for the first time to the 5f series. The vacant coordination site and low valence of (C5H4SiMe3)3U prove to be key to the reversible formation of (C5H4SiMe3)3U-H2 (complex 1), and the paramagnetism of the f3 center facilitates the detection of complex 1 by NMR spectroscopy. Density functional theory calculations reveal that the delocalization of the 5f electron density from (C5H4SiMe3)3U onto the side-on dihydrogen ligand is crucial to complex formation, an unusual bonding situation for an actinide acid-base complex. The spectroscopic and computational results are compared to those reported for lanthanide metallocenes to yield insight into the nature of─and future possibilities for─f-element dihydrogen complexation.

3.
J Am Chem Soc ; 146(18): 12790-12798, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38684067

RESUMO

Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.

4.
J Am Chem Soc ; 146(27): 18306-18319, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936814

RESUMO

A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(µ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(µ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.

5.
Chemistry ; : e202401262, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777793

RESUMO

Cationic half-sandwich zinc complexes containing chelating amines [Cp*Zn(Ln)][BAr4 F] (2 a, Cp*=η3-C5Me5, Ln=N,N,N',N'-tetramethylethylenediamine, TMEDA; 2 b, Ln=N,N,N',N'-tetraethylethylenediamine, TEEDA; 2 c, Cp*=η1-C5Me5, Ln=N,N,N',N'',N''-pentamethyldiethylenetriamine, PMDTA; Ar4 F=(3,5-(CF3)2C6H3)4) reacted with dihydrogen (ca. 2 bar) in THF at 80 °C to give molecular zinc hydride cations [(Ln)ZnH(thf)m][BAr4 F] (3 a,b, m=1; 3 c, m=0) previously reported along with Cp*H. Pseudo first-order kinetics with respect to the concentration of 2 b suggests heterolytic cleavage of dihydrogen by the Zn-Cp* bond, reminiscent of σ-bond metathesis. Hydrogenolysis of the zinc cation 2 b in the presence of benzophenone gave the zinc alkoxide [(TEEDA)Zn(OCHPh2)(thf)][BAr4 F] (5 b). Cation 2 b was shown to catalytically hydrogenate N-benzylideneaniline. The PMDTA complex 2 c underwent C-H bond activation in acetonitrile to give a dinuclear µ-κC,κN-cyanomethyl zinc complex [(PMDTA)Zn(CH2CN)]2[BAr4 F]2 (6 c).

6.
Chemistry ; 30(15): e202303949, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116910

RESUMO

Reaction of the 1,2-disilylenes {(DipAr Am)Si}2 (DipAr Am=[(NDip)2 CAr]- , Dip=2,6-diisopropylphenyl, Ar=4-C6 H4 But (Ar') 1 a or Ph 1 b) and two abnormal N-heterocyclic silylenes, (DipAr Am)SiOCSi{(NDip)2 CAr} (Ar=Ar' 3 a or Ph 3 b) with N2 O led to formation of unprecedented examples of uncoordinated silicon analogues of carboxylic acid anhydrides, (DipAr Am)(O=)SiOSi(=O)(DipAr Am) (Ar=Ar' 2 a or Ph 2 b). Both compounds have been fully characterized, and the mechanism of formation of one explored using DFT calculations. Reduction of sila-acid anhydride 2 a with a dimagnesium(I) compound, [{(Mes Nacnac)Mg}2 ] (Mes Nacnac=[(MesNCMe)2 CH]- , Mes=mesityl), led to the one-electron reduction of the anhydride and formation of a magnesium complex of a sila-acid anhydride radical anion [(Mes Nacnac)Mg{(OSi(DipAr' Am)}2 O] 5. A combination of EPR spectroscopic studies and DFT calculations reveal the unpaired electron to largely reside on one of the amidinate ligands of the complex.

7.
Chemistry ; 30(27): e202400681, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417144

RESUMO

The bulky ß-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(µ-H)]2, [(BDIDipp/DCHP)Eu(µ-H)]2 and [(BDIDipp/TCHP)Eu(µ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of ß-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.

8.
Inorg Chem ; 63(18): 8493-8501, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38651332

RESUMO

Oxidative addition of dihydrogen across a metal-metal bond to form reactive metal hydrides in homogeneous catalysis is known for transition metals but not for zinc(I)-zinc(I) bond as found in Carmona's eponymous dizinconene [Zn2Cp*2] (Cp* = η5-C5Me5). Dihydrogen reacted with the heteroleptic zinc(I)-zinc(I) bonded cation [(L2)Zn-ZnCp*][BAr4F] (L2 = TMEDA, N,N,N',N'-tetramethylethylenediamine, TEEDA, N,N,N',N'-tetraethylethylenediamine; ArF = 3,5-(CF3)2C6H3) under 2 bar at 80 °C to give the zinc(II) hydride cation [(L2)ZnH(thf)][BAr4F] along with zinc metal and Cp*H derived from the intermediate [Cp*ZnH]. DFT calculations show that the cleavage of dihydrogen occurs through a highly unsymmetrical transition state. Mechanistic studies agree with a heterolytic cleavage of dihydrogen as a result of the cationic charge and unsymmetrical ligand coordination. To explore the existence of zinc(I) hydride, thermally unstable hydridotriphenylborate complexes of zinc(I) [(L2)Zn(HBPh3)-ZnCp*] (L2 = TMEDA, TEEDA; TMPDA, N,N,N',N'-tetramethyl-1,3-propylenediamine) have been prepared by salt metathesis and were shown to undergo fast exchange with both BPh3 and [HBPh3]-.

9.
Inorg Chem ; 63(16): 7177-7188, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38598523

RESUMO

While synthesizing a series of rhenium-lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(µ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(µ-η1:η1-N2)Re(η5-Cp)(BDI)][(µ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium-rhenium complex (η8-COT)Er[(µ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium-rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(µ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(µ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium-rare earth triple inverse sandwich complex Y[(µ-η5:η5-Cp)Re(BDI)]3 (6-Y).

10.
Inorg Chem ; 63(24): 11296-11310, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38836624

RESUMO

We expand upon the synthetic utility of anionic rhenium complex Na[(BDI)ReCp] (1, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate) to generate several rhenium-phosphorus complexes. Complex 1 reacts in a metathetical manner with chlorophosphines Ph2PCl, MeNHP-Cl, and OHP-Cl to generate XL-type phosphido complexes 2, 3, and 4, respectively (MeNHP-Cl = 2-chloro-1,3-dimethyl-1,3,2-diazaphospholidine; OHP-Cl = 2-chloro-1,3,2-dioxaphospholane). Crystallographic and computational investigations of phosphido triad 2, 3, and 4 reveal that increasing the electronegativity of the phosphorus substituent (C < N < O) results in a shortening and strengthening of the rhenium-phosphorus bond. Complex 1 reacts with iminophosphane Mes*NPCl (Mes* = 2,4,6-tritert-butylphenyl) to generate linear iminophosphanyl complex 5. In the presence of a suitable halide abstraction reagent, 1 reacts with the dichlorophosphine iPr2NPCl2 to afford cationic phosphinidene complex 6+. Complex 6+ may be reduced by one electron to form 6•, a rare example of a stable, paramagnetic phosphinidene complex. Spectroscopic and structural investigations, as well as computational analyses, are employed to elucidate the influence of the phosphorus substituent on the nature of the rhenium-phosphorus bond in 2 through 6. Furthermore, we examine several common analogies employed to understand metal phosphido, phosphinidene, and iminophosphanyl complexes.

11.
Angew Chem Int Ed Engl ; 63(29): e202405494, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661015

RESUMO

Polynuclear metal hydride clusters play important roles in various catalytic processes, with most of the reported polynuclear metal hydride clusters adopting a polyhedral three-dimensional structure. Herein, we report the first example of a planar tetranuclear uranium hydride cluster [(CpCMe2CMe2Cp)U]4(µ2-H)4(µ3-H)4 (U4H8). It was synthesized by reacting an ansa-bis(cyclopentadienyl) ligand-supported uranium chloride precursor [(CpCMe2CMe2Cp)U]3(µ2-Cl)3(µ3-Cl)2 with NaHBEt3. The presence of hydrides in U4H8 was confirmed by NMR spectroscopy and its reactivity with phenol and carbon tetrachloride. DFT calculations also facilitated the determination of the hydrides' positions in U4H8, featuring four bridging µ2-H ligands and four face-capping µ3-H ligands, with the four U centers arranged in a rhombic geometry. The U4H8 represents not only the first example of planar polynuclear actinide metal hydride cluster but also the uranium hydride cluster with the highest nuclearity reported to date.

12.
Angew Chem Int Ed Engl ; 63(6): e202317346, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100190

RESUMO

The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.

13.
Angew Chem Int Ed Engl ; 63(23): e202318689, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38547324

RESUMO

The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.

14.
Angew Chem Int Ed Engl ; : e202407339, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714494

RESUMO

Two-electron oxidative addition is one of the most important elementary reactions for d-block transition metals but it is uncommon for f-block elements. Here, we report the first examples of intermolecular oxidative addition of E-H (E=C, N) bonds to uranium(II) centers. The transient U(II) species was formed in-situ by reducing a heterometallic cluster featuring U(IV)-Pd(0) bonds with potassium-graphite (KC8). Oxidative addition of C-H or N-H bonds to the U(II) centers was observed when this transient U(II) species was treated with benzene, carbazole or 1-adamantylamine, respectively. The U(II) centers could also react with tetracene, biphenylene or N2O, leading to the formation of arene reduced U(IV) products and uranyl(VI) species via two- or four-electron processes. This study demonstrates that the intermolecular two-electron oxidative addition reactions are viable for actinide elements.

15.
J Am Chem Soc ; 145(48): 26435-26443, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991736

RESUMO

Dinitrogen cleavage provides an attractive but poorly studied route to the assembly of multimetallic nitride clusters. Here, we show that the monoelectron reduction of the dinitrogen complex [{U(OC6H2-But3-2,4,6)3}2(µ-η2:η2-N2)], 1, allows us to generate, for the first time, a uranium complex presenting a rare triply reduced N2 moiety ((µ-η2:η2-N2)•3-). Importantly, the bound dinitrogen can be further reduced, affording the U4N4 cubane cluster, 3, and the U6N6 edge-shared cubane cluster, 4, thus showing that (N2)•3- can be an intermediate in nitride formation. The tetranitride cluster showed high reactivity with electrophiles, yielding ammonia quantitatively upon acid addition and promoting CO cleavage to yield quantitative conversion of nitride into cyanide. These results show that dinitrogen reduction provides a versatile route for the assembly of large highly reactive nitride clusters, with U6N6 providing the first example of a molecular nitride of any metal formed from a complete cleavage of three N2 molecules.

16.
J Am Chem Soc ; 145(29): 16271-16283, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440295

RESUMO

The synthesis of molecular uranium complexes in oxidation states lower than +3 remains a challenge despite the interest for their multielectron transfer reactivity and electronic structures. Herein, we report the one- and two-electron reduction of a U(III) complex supported by an arene-tethered tris(siloxide) tripodal ligand leading to the mono-reduced complexes, [K(THF)U((OSi(OtBu)2Ar)3-arene)(THF)] (2) and [K(2.2.2-cryptand)][U((OSi(OtBu)2Ar)3-arene)(THF)] (2-crypt), and to the di-reduced U(I) synthons, [K2(THF)3U((OSi(OtBu)2Ar)3-arene)]∞ (3) and [(K(2.2.2-cryptand))]2[U((OSi(OtBu)2Ar)3-arene)] (3-crypt). EPR and UV/vis/NIR spectroscopies, magnetic, cyclic voltammetry, and computational studies provide strong evidence that complex 2-crypt is best described as a U(II), where the U(II) is stabilized by δ-bonding interactions between the arene anchor and the uranium frontier orbitals, whereas complexes 3 and 3-crypt are best described as having a U(III) ion supported by the di-reduced arene anchor. Three quasi-reversible redox waves at E1/2 = -3.27, -2.45, and -1.71 V were identified by cyclic voltammetry studies and were assigned to the U(IV)/U(III), U(III)/U(II), and U(II)/U(III)-(arene)2- redox couples. The ability of complexes 2 and 3 in transferring two- and three-electrons, respectively, to oxidizing substrates was confirmed by the reaction of 2 with azobenzene (PhNNPh), leading to the U(IV) complex, [K(Et2O)U((OSi(OtBu)2Ar)3-arene)(PhNNPh)(THF)] (4), and of complex 3 with cycloheptatriene, yielding the U(IV) complex, [(K(Et2O)2)U((OSi(OtBu)2Ar)3-arene)(η7-C7H7)]∞ (6). These results demonstrate that the arene-tethered tris(siloxide) tripodal ligand provides an excellent platform for accessing low-valent uranium chemistry while implementing multielectron transfer pathways as shown by the reactivity of complex 3, which provides the third example of a U(I) synthon.

17.
Acc Chem Res ; 55(12): 1718-1730, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617335

RESUMO

ConspectusHeterometallic clusters with M-M bonds have significantly interested chemists because of their attractive structures and synergistic effects in small-molecule activation and catalysis. However, reports of the isolation of heterometallic clusters with uranium-transition metal (U-TM) bonds remain very limited. In this Account, we describe our research in the construction of heterometallic molecular clusters with multiple U-TM single or multiple bonds supported by novel double-layer N-P ligands. Multimetallic synergistic catalysis and small-molecule activation with these species are also summarized.First, according to the hard-soft acid-base theory, we employed a three-armed N-P ligand, which can be used to construct heterometallic clusters with four or six U-Ni bonds. This strategy was also effective in the construction of complexes with direct rare earth metal-TM bonding. The similar two-armed N-P ligands also are effective platforms for the synthesis of heterometallic complexes with U-Ni, U-Pd, and U-Pt bonds.Second, a set of heterometallic clusters featuring U≡Rh, U≡Co, and U≡Fe triple bonds were constructed under routine experimental conditions. X-ray diffraction analysis of these clusters exhibits the shortest U-TM bond distance (1.9693(4) Å for the U≡Fe triple bond) in these complexes. Theoretical studies reveal that the nature of the triple bond is one covalent σ bond and two TM → U dative π bonds. A large Wiberg bond index (WBI) of 2.93 and a significant degree of covalency for the U≡TM triple bonds were also found in these complexes.Third, these uranium complexes supported by the double-layer N-P ligands exhibit great potential in small-molecule activation. For instance, N2 cleavage without an external reducing agent was achieved by a U(III)-P(III) synergistic six-electron reduction. The synergism between U(III) and P(III) enables the activation of other small molecules, such as O2, P4, and As0(nano), and highlights the importance of the P atom in the double-layer N-P ligand for the activation of small molecules. A heterometallic cluster with U-Rh bonds can break the strong N≡N triple bond in N2 in the presence of potassium graphite, suggesting a synergistic effect between U and Rh. This multimetallic synergistic effect was also observed in catalytic processes. A heterometallic cluster with U≡Co triple bonds shows excellent selectivity and activity in the hydroboration of a series of alkynes under mild conditions. These results lead to effective methods for the construction of heterometallic molecular clusters with U-TM single or multiple bonds and could promote the application of heterometallic clusters with U-TM bonds in catalysis and the activation of small molecules.

18.
Chemistry ; 29(53): e202301496, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37309983

RESUMO

In the presence of TMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine), zinc dihydride reacted with germanium(II) compounds (BDI-H)Ge (1) and [(BDI)Ge][B(3,5-(CF3 )2 C6 H3 )4 ] (3) (BDI-H = HC{(C=CH2 )(CMe)(NAr)2 }, BDI = [HC(CMeNAr)2 ]; Ar = 2,6-i Pr2 C6 H3 ) by formal insertion of the germanium(II) center into the Zn-H bond of polymeric [ZnH2 ]n to give neutral and cationic zincagermane with a H-Ge-Zn-H core [(BDI-H)Ge(H)-(H)Zn(tmeda)] (2) and [(BDI)Ge(H)-(H)Zn(tmeda)][B(3,5-(CF3 )2 C6 H3 )4 ] (4), respectively. Compound 2 eliminated [ZnH2 ] giving diamido germylene 1 at 60 °C. Compound 2 and deuterated analogue 2-d2 exchanged with [ZnH2 ]n and [ZnD2 ]n in the presence of TMEDA to give a mixture of 2 and 2-d2 . Compounds 2 and 4 reacted with carbon dioxide (1 bar) at room temperature to form zincagermane diformate [(BDI-H)Ge(OCHO)-(OCHO)Zn(tmeda)] (5) and formate bridged digermylene [({BDI}Ge)2 (µ-OCHO)]+ [B(C6 H3 (CF3 )2 )4 ] (6) along with zinc formate [(tmeda)Zn(µ-OCHO)3 Zn(tmeda)][B(C6 H3 (CF3 )2 )4 ] (7), respectively. The hydridic nature of the Ge-H and Zn-H bonds in 2 and 4 was probed by reactions with Brönsted and Lewis acids.

19.
Inorg Chem ; 62(39): 16077-16083, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733482

RESUMO

Ligands are known to play a crucial role in the construction of complexes with metal-metal bonds. Compared with metal-metal bonds involving d-block transition metals, knowledge of the metal-metal bonds involving f-block rare-earth metals still lags far behind. Herein, we report a series of complexes with cerium-transition-metal bonds, which are supported by two kinds of nitrogen-phosphorus ligands N[CH2CH2NHPiPr2]3 (VI) and PyNHCH2PPh2 (VII). The reactions of zerovalent group 10 metal precursors, Pd(PPh3)4 and Pt(PPh3)4, with the cerium complex supported by VI generate heterometallic clusters [N{CH2CH2NPiPr2}3Ce(µ-M)]2 (M = Pd, 2 and M = Pt, 3) featuring four Ce-M bonds; meanwhile, the bimetallic species [(PyNCH2PPh2)3Ce-M] (M = Ni, 5; M = Pd, 6; and M = Pt, 7) with a single Ce-M bond were isolated from the reactions of the cerium precursor 4 supported by VII with Ni(COD)2, Pd(PPh3)4, or Pt(PPh3)4, respectively. These complexes represent the first example of species with an RE-M bond between Ce and group 10 metals, and 2 and 3 contain the largest number of RE-M donor/acceptor interactions ever to have been observed in a molecule.

20.
Inorg Chem ; 62(45): 18543-18552, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37906233

RESUMO

We demonstrate the catalytic role of aluminum and boron centers in aluminum borohydride [(2-Me2CH2C6H4)(C6H5)Al(µ-H)2B(C6H5)2] (6) during carbon dioxide (CO2) hydrosilylation. Preliminary investigations into CO2 reduction using [(2-Me2NCH2C6H4)(H)Al(µ-H)]2 (1) and [Ph3C][B(3,5-C6H3Cl2)4] (2) in the presence of Et3SiH and PhSiH3 resulted in CH2(OSiR3)2 and CH3OSiR3, which serve as formaldehyde and methanol surrogates, respectively. In pursuit of identifying the active catalytic species, three compounds, B(3,5-C6H3Cl2)3 (3), [(2-Me2NCH2C6H4)(3,5-C6H3Cl2)Al(µ-H)2B(3,5-C6H3Cl2)2] (4), and [(2-Me2NCH2C6H4)2Al(THF)][B(3,5-C6H3Cl2)4] (5), were isolated. Among compounds 2-5, the highest catalytic conversion was achieved by 4. Further, 4 and 6 were prepared in a straightforward method by treating 1 with 3 and BPh3, respectively. 6 was found to be in equilibrium with 1 and BPh3, thus making the catalytic process of 6 more efficient than that of 4. Computational investigations inferred that CO2 reduction occurs across the Al-H bond, while Si-H activation occurs through a concerted mechanism involving an in situ generated aluminum formate species and BPh3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA