Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(14): 9094-9138, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379327

RESUMO

Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Agregados Proteicos , Neoplasias/metabolismo , Amiloide/química
2.
Biochemistry ; 62(1): 35-43, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535020

RESUMO

The gene encoding the p53 tumor suppressor protein is the most frequently mutated oncogene in cancer patients; yet, generalized strategies for rescuing the function of different p53 mutants remain elusive. This work investigates factors that may contribute to the low inherent stability of the wild-type p53 core domain (p53C) and structurally compromised Y220C mutant. Pressure-induced unfolding of p53C was compared to p63C, the p53 family member with the highest stability, the engineered superstable p53C hexamutant (p53C HM), and lower stability p53C Y220C cancer-associated mutant. The following pressure unfolding values (P50% bar) were obtained: p53C 3346, p53C Y220C 2217, p53C HM 3943, and p63C 4326. Molecular dynamics (MD) simulations revealed that p53C Y220C was most prone to water infiltration, followed by p53C, whereas the interiors of p53C HM and p63C remained comparably dry. A strong correlation (r2 = 0.92) between P50% and extent of interior hydration was observed. The pathways of individual water molecule entry and exit were mapped and analyzed, revealing a common route preserved across the p53 family involving a previously reported pocket, along with a novel surface cleft, both of which appear to be targetable by small molecules. Potential determinants of propensity to water incursion were assessed, including backbone hydrogen bond protection and combined sequence and structure similarity. Collectively, our results indicate that p53C has an intrinsic susceptibility to water leakage, which is exacerbated in a structural class mutant, suggesting that there may be a common avenue for rescuing p53 function.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Água/metabolismo , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Fenômenos Biofísicos
3.
J Biol Chem ; 294(52): 20054-20069, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31748410

RESUMO

Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.


Assuntos
Troponina C/metabolismo , Troponina T/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Feminino , Humanos , Masculino , Mutagênese Sítio-Dirigida , Contração Miocárdica , Miocárdio/metabolismo , Miofibrilas/fisiologia , Ressonância Magnética Nuclear Biomolecular , Linhagem , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Troponina C/química , Troponina T/química , Troponina T/genética
4.
Arch Biochem Biophys ; 663: 95-100, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30584890

RESUMO

The cardiac contraction-relaxation cycle is controlled by a sophisticated set of machinery. Of particular interest, is the revelation that allosteric networks transmit effects of binding at one site to influence troponin complex dynamics and structural-mediated signaling in often distal, functional sites in the myofilament. Our recent observations provide compelling evidence that allostery can explain the function of large-scale macromolecular events. Here we elaborate on our recent findings of interdomain communication within troponin C, using cutting-edge structural biology approaches, and highlight the importance of unveiling the unknown, distant communication networks within this system to obtain more comprehensive knowledge of how allostery impacts cardiac physiology and disease.


Assuntos
Troponina C/metabolismo , Troponina I/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Humanos , Ligação Proteica , Relação Estrutura-Atividade , Troponina C/química , Troponina I/química
5.
iScience ; 26(1): 105696, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36465857

RESUMO

The severe acute respiratory syndrome spread worldwide, causing a pandemic. SARS-CoV-2 mutations have arisen in the spike, a glycoprotein at the viral envelope and an antigenic candidate for vaccines against COVID-19. Here, we present comparative data of the glycosylated full-length ancestral and D614G spike together with three other transmissible strains classified by the World Health Organization as variants of concern: beta, gamma, and delta. By showing that D614G has less hydrophobic surface exposure and trimer persistence, we place D614G with features that support a model of temporary fitness advantage for virus spillover. Furthermore, during the SARS-CoV-2 adaptation, the spike accumulates alterations leading to less structural stability for some variants. The decreased trimer stability of the ancestral and gamma and the presence of D614G uncoupled conformations mean higher ACE-2 affinities compared to the beta and delta strains. Mapping the energetics and flexibility of variants is necessary to improve vaccine development.

6.
Essays Biochem ; 66(7): 1023-1033, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36350030

RESUMO

In 1972, the Weber statement, "The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations," first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid-liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53's functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Proteína Supressora de Tumor p53 , Doenças Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Núcleo Celular/metabolismo
7.
Front Mol Biosci ; 9: 944955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090037

RESUMO

The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.

8.
Chem Sci ; 12(21): 7308-7323, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163821

RESUMO

Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.

9.
Chem Sci ; 12(21): 7334-7349, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34163823

RESUMO

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy.

10.
Biomolecules ; 10(4)2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260447

RESUMO

Despite being referred to as the guardian of the genome, when impacted by mutations, p53 can lose its protective functions and become a renegade. The malignant transformation of p53 occurs on multiple levels, such as altered DNA binding properties, acquisition of novel cellular partners, or associating into different oligomeric states. The consequences of these transformations can be catastrophic. Ongoing studies have implicated different oligomeric p53 species as having a central role in cancer biology; however, the correlation between p53 oligomerization status and oncogenic activities in cancer progression remains an open conundrum. In this review, we summarize the roles of different p53 oligomeric states in cancer and discuss potential research directions for overcoming aberrant p53 function associated with them. We address how misfolding and prion-like amyloid aggregation of p53 seem to play a crucial role in cancer development. The misfolded and aggregated states of mutant p53 are prospective targets for the development of novel therapeutic strategies against tumoral diseases.


Assuntos
Neoplasias/metabolismo , Agregados Proteicos , Multimerização Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Estrutura Quaternária de Proteína
11.
Curr Opin Struct Biol ; 58: 214-223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400843

RESUMO

Electron microscopy is based on elastic scattering due to Coulomb forces between the incident electrons and the sample; thus, electron scattering is dependent on the charge distribution in the sample. Unlike atomic scattering factors for X-rays, electron scattering factors for some atoms are strongly dependent on scattering angle, and the scattering factor for ionic oxygen is negative at low scattering angle. This phenomenon can result in a significant negative contribution to Coulomb potential maps by oxygen and can result in deviations in the positions of positive map features from atomic centers. An important factor that can also complicate the interpretation of cryoEM maps is the exquisite sensitivity of macromolecules to damage from electron irradiation, especially the carboxylates of acidic amino acids. Ideally, when compared with electron density maps derived by X-ray crystallography, Coulomb potential maps can provide additional details about the electrostatic environment and charge state of atoms. Enhancements in model building, refinement and computational simulation will be required to realize the full potential of EM-derived maps to reveal deeper insight into the electronic structure and functional properties of macromolecular complexes and their interactions with binding partners, ligands, cofactors, and drugs.


Assuntos
Microscopia Crioeletrônica/métodos , Oxigênio/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA