Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 469(1): 149-158, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27924355

RESUMO

The medullary thick ascending limb of Henle's loop (mTAL) is crucial for urine-concentrating ability of the kidney. It is water tight and able to dilute the luminal fluid by active transcellular NaCl transport, fueling the counter current mechanism by increasing interstitial osmolality. While chloride is exclusively transported transcellularly, approx. 50% of sodium transport occurs via the paracellular route, driven by the lumen-positive transepithelial potential. Antidiuretic hormone (AVP) is known to increase active NaCl transport to support collecting duct water reabsorption. Here, we investigated the concomitant effects of AVP on the paracellular properties of mTAL. Freshly isolated mouse mTALs were perfused and electrophysiological transcellular and paracelluar properties were assessed in a paired fashion before and after AVP stimulation. In addition, the same parameters were measured in mice on a water-restricted (WR) or water-loaded (WL) diet for 5 days. Acute ex vivo stimulation as well as long-term in vivo water restriction increased equivalent short circuit current as a measure of active transcellular NaCl transport. Intriguingly, in both experimental approaches, this was accompanied by markedly increased paracellular Na+ selectivity. Thus, AVP is able to acutely regulate paracellular cation selectivity in parallel to transcellular NaCl transport, allowing balanced paracellular Na+ absorption under an increased transepithelial driving force.


Assuntos
Transporte Biológico/fisiologia , Medula Renal/metabolismo , Túbulos Renais/metabolismo , Cloreto de Sódio/metabolismo , Sódio/metabolismo , Vasopressinas/metabolismo , Animais , Humanos , Permeabilidade
2.
Am J Physiol Renal Physiol ; 302(4): F487-94, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22114208

RESUMO

Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (mTAL) including luminal and basolateral P2Y(2) receptors (Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J. J Am Soc Nephrol 18: 2062-2070, 2007). In addition, we found evidence for a basolateral P2X receptor. Here, we investigate the effect of basolateral ATP on NaCl absorption in isolated, perfused mouse mTALs using the electrical measurement of equivalent short-circuit current (I'(sc)). Nonstimulated mTALs transported at a rate of 1,197 ± 104 µA/cm(2) (n = 10), which was completely blockable with luminal furosemide (100 µM). Basolateral ATP (100 µM) acutely (1 min) and reversibly reduced the absorptive I'(sc). After 2 min, the reduction amounted to 24.4 ± 4.0% (n = 10). The nonselective P2 receptor antagonist suramin blocked the effect. P2Y receptors were found not to be involved in this effect. The P2X receptor agonist 2-methylthio ATP mimicked the ATP effect, and the P2X receptor antagonist periodate-oxidized ATP blocked it. In P2X(7)(-/-) mice, the ATP effect remained unaltered. In contrast, in P2X(4)(-/-) mice the ATP-induced inhibition of transport was reduced. A comprehensive molecular search identified P2X(4), P2X(5), and P2X(1) receptor subunit mRNA in isolated mouse mTALs. These data define that basolateral ATP exerts a significant inhibition of Na(+) absorption in mouse mTAL. Pharmacological, molecular, and knockout mouse data identify a role for the P2X(4) receptor. We suggest that other P2X subunits like P2X(5) are part of the P2X receptor complex. These data provide the novel perspective that an ionotropic receptor and thus a nonselective cation channel causes transport inhibition in an intact renal epithelium.


Assuntos
Transporte de Íons/fisiologia , Alça do Néfron/metabolismo , Receptores Purinérgicos P2X/metabolismo , Cloreto de Sódio/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Feminino , Alça do Néfron/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2X/genética
3.
Nat Commun ; 9(1): 756, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472725

RESUMO

Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncharacterized family of lytic polysaccharide monooxygenases (LPMOs). We show that this LPMO family spans across several clades of the Tree of Life, is of ancient origin, and was recruited by early arthropods with possible roles in remodeling endogenous chitin scaffolds during development and metamorphosis. Based on our in-depth characterization of Thermobia's LPMOs, we propose that diversification of these enzymes toward cellulose digestion might have endowed ancestral insects with an effective biochemical apparatus for biomass degradation, allowing the early colonization of land during the Paleozoic Era. The vital role of LPMOs in modern agricultural pests and disease vectors offers new opportunities to help tackle global challenges in food security and the control of infectious diseases.


Assuntos
Artrópodes/enzimologia , Proteínas de Insetos/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Animais , Artrópodes/genética , Artrópodes/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Celulose/metabolismo , Quitina/metabolismo , Evolução Molecular , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Insetos/enzimologia , Insetos/genética , Insetos/crescimento & desenvolvimento , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Filogenia , Proteômica
4.
Front Physiol ; 4: 280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130530

RESUMO

Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb (TAL). In the medullary thick ascending limb (mTAL), basolateral P2X receptors markedly (~25%) inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (<35 days) and adult (>35 days) male mice. Using microelectrodes, we determined the transepithelial voltage (Vte) and the transepithelial resistance (Rte) and thus, transepithelial NaCl absorption (equivalent short circuit current, I'sc). We find that mTALs from adult wild type (WT) mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rtevalues in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO) mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vtevalues compared to the juvenile. No difference in absolute I'sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes. These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in mouse mTAL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA