Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576138

RESUMO

Osteoarthritis is a degenerative disease, often resulting in chronic joint pain and commonly affecting elderly people. Current treatments with anti-inflammatory drugs are palliative, making the discovery of new treatments necessary. The inhibition of matrix metalloproteinase MMP-13 is a validated strategy to prevent the progression of this common joint disorder. We recently described polybrominated benzotriazole derivatives with nanomolar inhibitory activity and a promising selectivity profile against this collagenase. In this work, we have extended the study in order to explore the influence of bromine atoms and the nature of the S1' heterocyclic interacting moiety on the solubility/selectivity balance of this type of compound. Drug target interactions have been assessed through a combination of molecular modeling studies and NMR experiments. Compound 9a has been identified as a water-soluble and highly potent inhibitor with activity in MG-63 human osteosarcoma cells.


Assuntos
Desenho de Fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Osteossarcoma/patologia , Água/química , Linhagem Celular Tumoral , Química Click , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Solubilidade
2.
Molecules ; 26(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577077

RESUMO

Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.


Assuntos
Histona Desacetilases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA