Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 290(37): 22593-601, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26224632

RESUMO

A long standing question in synaptic physiology is how neurotransmitter-filled vesicles are rebuilt after exocytosis. Among the first steps in this process is the endocytic retrieval of the transmembrane proteins that are enriched in synaptic vesicles (SVs). At least six types of transmembrane proteins must be recovered, but the rules for how this multiple cargo selection is accomplished are poorly understood. Among these SV cargos is the vesicular glutamate transporter (vGlut). We show here that vGlut1 has a strong influence on the kinetics of retrieval of half of the known SV cargos and that specifically impairing the endocytosis of vGlut1 in turn slows down other SV cargos, demonstrating that cargo retrieval is a collective cargo-driven process. Finally, we demonstrate that different cargos can be retrieved in the same synapse with different kinetics, suggesting that additional post-endocytic sorting steps likely occur in the nerve terminal.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Endocitose/fisiologia , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Células Cultivadas , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Mol Pharmacol ; 68(5): 1484-95, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16113085

RESUMO

We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1 receptor. In equilibrium binding assays, the Org compounds significantly increased the binding of the CB1 receptor agonist [3H]CP 55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol], indicative of a positively cooperative allosteric effect. The same compounds caused a significant, but incomplete, decrease in the specific binding of the CB1 receptor inverse agonist [3H]SR 141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride], indicative of a limited negative binding cooperativity. Analysis of the data according to an allosteric ternary complex model revealed that the estimated affinity of each Org compound was not significantly different when the radioligand was [3H]CP 55,940 or [3H]SR 141716A. However, the estimated cooperatively factor for the interaction between modulator and radioligand was greater than 1 when determined against [3H]CP 55,940 and less than 1 when determined against [3H]SR 141716A. [3H]CP 55,940 dissociation kinetic studies also validated the allosteric nature of the Org compounds, because they all significantly decreased radioligand dissociation. These data suggest that the Org compounds bind allosterically to the CB1 receptor and elicit a conformational change that increases agonist affinity for the orthosteric binding site. In contrast to the binding assays, however, the Org compounds behaved as insurmountable antagonists of receptor function; in the reporter gene assay, the guanosine 5'-O-(3-[35S]thio)triphosphate binding assay and the mouse vas deferens assay they elicited a significant reduction in the Emax value for CB1 receptor agonists. The data presented clearly demonstrate, for the first time, that the cannabinoid CB1 receptor contains an allosteric binding site that can be recognized by synthetic small molecule ligands.


Assuntos
Receptor CB1 de Canabinoide/efeitos dos fármacos , Regulação Alostérica , Animais , Sítios de Ligação , Cicloexanóis/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Masculino , Camundongos , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA