RESUMO
European eels (Anguilla anguilla) undertake an impressive 5 000 km long migration from European fresh waters through the North Atlantic Ocean to the Sargasso Sea. Along with sexual maturation, the eel skeleton undergoes a remarkable morphological transformation during migration, where a hitherto completely obscure bone loss phenomenon occurs. To unravel mechanisms of the maturation-related decay of the skeleton, we performed a multiscale assessment of eels' bones at different life-cycle stages. Accordingly, the skeleton reflects extensive bone loss that is mediated via multinucleated bone-resorbing osteoclasts, while other resorption mechanisms such as osteocytic osteolysis or matrix demineralization were not observed. Preserving mechanical stability and releasing minerals for energy metabolism are two mutually exclusive functions of the skeleton that are orchestrated in eels through the presence of two spatially segregated hard tissues: cellular bone and acellular notochord. The cellular bone serves as a source of mineral release following osteoclastic resorption, whereas the mineralized notochord sheath, which is inaccessible for resorption processes due to an unmineralized cover layer, ensures sufficient mechanical stability as a part of the notochord sheath. Clearly, an eel's skeleton is structurally optimized to meet the metabolic challenge of fasting and simultaneous sexual development during an exhausting journey to spawning areas, while the function of the vertebral column is maintained to achieve this goal.
Assuntos
Anguilla/anatomia & histologia , Migração Animal , Reabsorção Óssea , Osso e Ossos/fisiologia , Estágios do Ciclo de Vida , Anguilla/fisiologia , Animais , Oceano Atlântico , Calcificação FisiológicaRESUMO
BACKGROUND: Left atrial strain (LAS) assessment by speckle tracking echocardiography (STE) has been shown to be a remarkable means of quantifying LA function as an early marker of LV pathology. As exercise testing is also performed on a treadmill, the aim of this study was to investigate the effect of upright posture on LAS in healthy athletes. METHODS: Fifty male athletes (mean age 25.7 ± 7.3 years) underwent transthoracic echocardiography (TTE) in the upright and left lateral positions. In addition to the conventional echocardiographic parameters, in all athletes, LA conduction strain (LAScd), contraction strain (LASct), reservoir strain (LASr), and maximum LA volume (LAVmax) were assessed by STE in both positions. RESULTS: Comparing upright posture and the left lateral position, LAScd (-14.0 ± 5.9% vs. -27.4 ± 7.1%; p < 0.001), LASct (-4.6 ± 3.5% vs. -11.3 ± 4.1%; p < 0.001), LASr (18.7 ± 7.6% vs. 38.7 ± 8.0%; p < 0.001), and LAVmax (24.4 ± 8.8% vs. 50.0 ± 14.2%) differed significantly. CONCLUSIONS: Upright posture has a significant effect on LA deformation, with decreased LAScd, LASct, and LASr. The results of this study contribute to the understanding of athletes' hearts and must be considered when performing echocardiography in healthy athletes on a treadmill.
RESUMO
Background: Spinometry is a radiation-free method to three-dimensional spine imaging that provides additional information about the functional gait patterns related to the pelvis and lower extremities. This radiation-free technology uses the surface topography of the trunk to analyze surface asymmetry and identify bony landmarks, thereby aiding the assessment of spinal deformity and supporting long-term treatment regimes. Especially reliable dynamic spinometric data for spine and pelvis are necessary to evaluate the management of non-specific back pain. Research aim: This study aims to generate reliable dynamic spinometric data for spine and pelvis parameters that can serve as reference data for future studies and clinical practice. Methods: This study assessed 366 subjects (185 females) under static and 360 subjects (181 females) under dynamic (walking on a treadmill at 3 km/h and 5 km/h) conditions. The DIERS Formetric 4Dmotion® system uses stripes of light to detect the surface topography of the spine and pelvis and identifies specific landmarks to analyze the spine during standing and walking. Results: Relevant gender effects were calculated for lordotic angle (ηp2 = 0.22) and pelvic inclination (ηp2 = 0.26). Under static conditions, female subjects showed larger values for both parameters (lordotic angle: 41.6 ± 8.60°; pelvic inclination: 25.5 ± 7.49°). Regarding speed effects, three relevant changes were observed (sagittal imbalance: ηp2 = 0.74, kyphotic angle: ηp2 = 0.13, apical deviation: ηp2 = 0.11). The most considerable changes were observed between static condition and 3 km/h, especially for sagittal imbalance and lordotic angle. For these parameters, relevant effect sizes (d > 0.8) were calculated between static and 3 km/h for males and females. Concerning clinical vertebral parameters, only lordotic angle and pelvic inclination were correlated with each other (r = 0.722). Conclusion: This study generated a gender-specific reference database of asymptomatic individuals for static and dynamic spinometry. It demonstrated that the DIERS Formetric 4Dmotion® system could capture natural changes in static and dynamic situations and catalogue functional adaptations of spino-pelvic statics at different speeds. The lordotic angle is an indirect marker of pelvic inclination, allowing spinometry to identify individuals at risk even under dynamic conditions.
RESUMO
BACKGROUND: Cardiac magnetic resonance imaging (cMRI) is considered the gold standard for the assessment of left ventricular (LV) systolic function. However, discrepancies have been reported in the literature between LV volumes assessed by transthoracic echocardiography (TTE) and cMRI. The objective of this study was to analyze the differences in LV volumes between different echocardiographic techniques and cMRI. METHODS AND RESULTS: In 64 male athletes (21.1 ± 4.9 years), LV volumes were measured by TTE using the following methods: Doppler echocardiography, anatomical M-Mode, biplane/triplane planimetry and 3D volumetry. In addition, LV end-diastolic (LVEDV), end-systolic (LVESV), and stroke volumes (LVSV) were assessed in 11 athletes by both TTE and cMRI. There was no significant difference between LVEDV and LVESV determined by biplane/triplane planimetry and 3D volumetry. LVEDV and LVESV measured by M-Mode were significantly lower compared to 3D volumetry. LVSV determined by Doppler with 3D planimetry of LV outflow tract was significantly higher than 2D planimetry and 3D volumetry, whereas none of the planimetric or volumetric methods for determining LVSV differed significantly. There were no significant differences for LVEDV, LVESV, LVSV and LVEF between cMRI and TTE determined by biplane planimetry in the subgroup of 11 athletes. CONCLUSION: The choice of echocardiographic method used has an impact on LVSV in athletes, so the LVSV should always be checked for plausibility. The same echocardiographic method should be used to assess LVSV at follow-ups to ensure good comparability. The data suggest that biplane LV planimetry by TTE is not inferior to cMRI.
RESUMO
Although several studies reported that raloxifene treatment improves postmenopausal osteoporotic bone structure and reduces fracture risk, only a few animal and no human studies have examined its effects on the fracture healing process. Thus the aim of the present study was to determine, whether systemic application of the selective estrogen receptor modulator raloxifene promotes fracture healing compared to untreated control-, estrogen-deficient-, as well as estrogen-treated mice using a standardized femoral osteotomy model (n = 60 mice). Ten days after surgery, contact radiography and undecalcified histomorphometric analysis revealed that raloxifene administration significantly improved the early stage of fracture healing compared to all other groups. At day 20, raloxifene and estrogen treatment led to a significant increase in callus mineralization and trabecular thickness compared to control mice. µCT analyses revealed no evidence of complete bony bridging of the fracture site in any control-, nor estrogen-deficient mouse after 20 days, while all femoral fractures in the raloxifene and estrogen group already healed adequately at this time. These data indicate that raloxifene treatment significantly improves all phases of fracture healing at least in mice. Therefore, raloxifene could be a possible pharmaceutical to enhance fracture healing in women, without the known side effects of estrogen.
Assuntos
Diáfises/efeitos dos fármacos , Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Estrogênios/farmacologia , Feminino , Fraturas do Fêmur/etiologia , Fêmur/efeitos dos fármacos , Fraturas Ósseas/etiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose Pós-Menopausa/complicaçõesRESUMO
OBJECTIVE: Previously, we demonstrated the relevance for endothelial carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expression in collateral formation. However, a proarteriogenic role for CEACAM1(+) myeloid cells is unknown. Here, we investigated the contribution of CEACAM1(+) myeloid cells on collateral formation. METHODS AND RESULTS: Collateral growth and vascular remodeling were analyzed in CEACAM1-competent and CEACAM1 null mice after femoral artery ligation in hindlimb ischemia. Reperfusion of the adductor muscles was evaluated by Laser Doppler measurements and microcomputed tomography imaging. In CEACAM1 null mice, poor reperfusion and reduced collateral formation were observed, accompanied by reduction in arterial diameters. Using flow cytometry, we identified an increase of the muscle-resident CD11b(+)/granulocyte receptor-1+ (Gr-1+) population in CEACAM1 null mice only, pointing toward a CEACAM1-dependent functional deviation. Direct and reciprocal bone marrow transplantations between CEACAM1-competent and CEACAM1 null mice, and antibody-mediated depletion of the CD11b(+)/Gr-1(+) population, confirmed the requirement of CEACAM1 expression on the CD11b(+)/Gr-1(+) population for reestablishment of perfusion after arterial occlusion. CONCLUSIONS: CEACAM1 expression on CD11b(+)/Gr-1(+) myeloid cells is a prerequisite for adequate collateral formation.
Assuntos
Antígeno CD11b/metabolismo , Antígeno Carcinoembrionário/metabolismo , Circulação Colateral , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Células Mieloides/metabolismo , Neovascularização Fisiológica , Receptores de Quimiocinas/metabolismo , Animais , Transplante de Medula Óssea , Antígeno Carcinoembrionário/genética , Modelos Animais de Doenças , Citometria de Fluxo , Membro Posterior , Isquemia/diagnóstico por imagem , Isquemia/genética , Isquemia/fisiopatologia , Fluxometria por Laser-Doppler , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/transplante , Fluxo Sanguíneo Regional , Fatores de Tempo , Microtomografia por Raio-XRESUMO
PURPOSE: A controversial relationship between osteoarthritis (OA) and bone fragility has been attracting considerable attention. However, despite interest in the effects of OA on femoral neck fracture risk and numerous studies analysing the changes in the arthritic femoral head, there is insufficient data about femoral neck 3D bone micro-architecture in individuals with hip osteoarthritis. We compared trabecular micro-architecture of the femoral neck between postmenopausal women with coxarthrosis and controls to explore whether coxarthrosis may indicate reduced bone fragility from the trabecular micro-architectural perspective. METHODS: The study sample included nine women with hip osteoarthritis and 13 age-matched controls. The femoral neck sections were scanned using micro-computed tomography, evaluating the cancellous bone from the superolateral and inferomedial neck subregions. RESULTS: Osteoarthritic subjects demonstrated a general trend of improved trabecular micro-architecture in both analysed subregions when compared with age-matched controls. In particular, several architectural properties that are important predictors of cancellous bone strength showed significantly better values in the OA group, even after adjusting for bone volume fraction. Namely, the OA group expressed higher trabecular connectivity (p = 0.008), lower SMI indicating more plate-like structure (p = 0.005), and reduced anisotropy (p = 0.006) particularly in the inferomedial neck. Osteoarthritic cases also trended towards higher BV/TV, particularly in the superolateral neck. All micro-architectural parameters displayed significant regional heterogeneity (p ≤ 0.01), with the inferomedial neck region showing more favourable values than the superolateral region. CONCLUSIONS: Enhanced trabecular micro-architecture of the femoral neck in postmenopausal osteoarthritic subjects suggests reduced cancellous bone fragility in comparison with their age-matched healthy controls.
Assuntos
Colo do Fêmur/diagnóstico por imagem , Osteoartrite do Quadril/diagnóstico por imagem , Microtomografia por Raio-X , Idoso , Análise de Variância , Estudos de Casos e Controles , Feminino , Humanos , Pós-Menopausa , Estatísticas não ParamétricasRESUMO
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Assuntos
Creatina , Exercício Físico , Creatina/metabolismo , Creatina/farmacologia , Creatina/uso terapêutico , Suplementos Nutricionais , Metabolismo Energético , Humanos , Mitocôndrias/metabolismoRESUMO
To evaluate the extent and characteristics of COVID-19 cases in relation to environmental COVID-19 incidences in the four best European soccer leagues (Bundesliga, Premier League, Serie A and La Liga) from the first of January 2020 until the end of January 2022. Methods: A retrospective evaluation of all publicly available COVID-19 cases in the studied cohorts was performed. The 14-day case incidences from epidemiological national data were used as reference values. The leagues studied are the Bundesliga (Germany), Premier League (Great Britain), Serie A (Italy) and La Liga (Spain). For all cases, the duration of time loss and date of case notification were recorded. Results: League-specific mean time loss due to disease or quarantine per COVID-19 case differs significantly between La Liga (11.45; ±5.21 days) and the other leagues studied (Bundesliga 20.41; ±33.87; p 0.0242; Premier League 17.12; ±10.39; p 0.0001; Serie A 17.61; ±12.71; p < 0.0001). A positive correlation between 14-day national incidence with COVID-19 disease occurrence in soccer leagues was found for all leagues studied. The correlations were strong in the Bundesliga (r 0.5911; CI 0.4249−0.7187; p < 0.0001), Serie A (r 0.5979; CI 0.4336−0.7238; p < 0.0001) and La Liga (r 0.5251; CI 0.3432−0.6690; p < 0.0001). A moderate correlation was found for the Premier League (r 0.3308; CI 0.1147−0.5169; p 0.0026). Odds ratios for altered environmental case risk in the cohorts studied could be calculated for four different national COVID-19 incidence levels (<50/100.000 to >500/100.000). A trend towards shorter COVID-19 case duration in the second half of 2021 was shown for all leagues studied. Conclusions: There was a significantly lower mean time-loss caused by a COVID-19 infection for cases occurred in La Liga compared with the other three leagues studied. For all four leagues studied, a positive, significant correlation of national environmental COVID-19 incidence level and the incidence of COVID-19 cases in the cohort of a football league was found.
RESUMO
2D speckle tracking echocardiography (2DSTE) is established to analyse left ventricular (LV) longitudinal function. The analysis of LV rotational deformation is challenging and requires standardization of image acquisition as well as postprocessing analysis. The aim of this study was to test the feasibility to analyse LV rotational deformation using 2DSTE by introducing a novel algorithm for the detection of artefacts. The study was performed in 20 healthy subjects serving as a control group and in 53 competitive sportsmen. Circumferential, radial strain (CS, RS) and LV rotation were analysed by 2DSTE in parasternal short axis views. The stepwise algorithm to exclude potential artefacts starts with the visual estimation of the image quality with respect to complete visualization of all myocardial segments during the entire cardiac cycle followed by the exclusion of data sets in participants with conduction abnormalities. The next step is the optimization of tracking areas and a cross-check of implausible strain waveforms in multiple acquired comparable cineloops. The last step is the exclusion of strain curves with persisting implausible waveforms if standardization failures and incorrect LV wall tracking are fixed. Plausible physiological strain curves were observed in 89% (n = 65/73) of all subjects. In controls all implausible waveforms could be verified as artefacts. The algorithm was applied in 53 professional athletes to test and confirm its feasibility. Abnormal CS waveforms were documented in 25 athletes, verified as artefacts due to tracking failures in 22 athletes and due to incorrect image acquisition in 3 athletes. CS artefacts were mostly located in the basal posterior and lateral LV segments. (endocardial: 6%, n = 4/70; p < 0.05) and basal posterior (endocardial: 8%, n = 5/70; p < 0.05) segments were highly susceptible to artefacts. 2DSTE of parasternal short axis views to analyse circumferential and radial deformation as well as LV rotation is feasible in athletes. The proposed algorithm helps to avoid artefacts and might contribute to standardization of this technique. 2DSTE might provide an interesting diagnostic tool for the detection of viral myocarditis, e.g. in athletes.
Assuntos
Ecocardiografia , Disfunção Ventricular Esquerda , Atletas , Estudos de Viabilidade , Ventrículos do Coração/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Função Ventricular EsquerdaRESUMO
Exclusion of cardiac abnormalities should be performed at the beginning of the athlete's career. Myocarditis, right ventricular remodeling and coronary anomalies are well-known causes of life-threatening events of athletes, major cardiovascular events and sudden cardiac death. The feasibility of an extended comprehensive echocardiographic protocol for the detection of structural cardiac abnormalities in athletes should be tested. This standardized protocol of transthoracic echocardiography includes two- and three-dimensional imaging, tissue Doppler imaging, and coronary artery scanning. Post processing was performed for deformation analysis of all compounds including layer strain. During 2017 and 2018, the feasibility of successful image acquisition and post processing analysis was retrospectively analyzed in 54 male elite athletes. In addition, noticeable findings inside the analyzed cohort are described. The extended image acquisition and data analyzing was feasible from 74 to 100%, depending on the used modalities. One case of myocarditis was detected in the present cohort. Coronary anomalies were not found. Right ventricular size and function were within normal ranges. Isovolumetric right ventricular relaxation time showed significant regional differences. One case of hypertrophic cardiomyopathy and two subjects with bicuspid aortic valves were found. Due to the excessive cardiac stress in highly competitive sports, high-quality and precise screening modalities are necessary, especially with respect to acquired cardiac diseases like acute myocarditis and pathological changes of left ventricular and RV geometry. The documented feasibility of the proposed extended protocol underlines the suitability to detect distinct morphological and functional cardiac alterations and documents the potential added value of a comprehensive echocardiography.
Assuntos
Atletas , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Anomalias dos Vasos Coronários/diagnóstico por imagem , Ecocardiografia Doppler , Ecocardiografia Tridimensional , Miocardite/diagnóstico por imagem , Função Ventricular Direita , Remodelação Ventricular , Adulto , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/fisiopatologia , Anomalias dos Vasos Coronários/complicações , Morte Súbita Cardíaca/etiologia , Estudos de Viabilidade , Humanos , Masculino , Miocardite/complicações , Miocardite/fisiopatologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Adulto JovemRESUMO
BACKGROUND AND OBJECTIVE: Soccer is associated with repetitive head trauma, which, as it is known from sports like football and boxing, can result in hypopituitarism. Gonadotropins and GH are the most common pituitary hormones to become deficient. GH deficiency is associated with an increased risk of cardiovascular mortality and has negative influence on body mass index, visceral fat mass, insulin resistance and sensitivity, bone mineral density and inflammatory markers. Therefore the aim of this study was to evaluate the somatotrope pituitary function in professional soccer players. RESEARCH DESIGN AND METHODS: This clinical study included 15 male, professional soccer players with at least 10 years of professional training. Basal hormonal parameters of the pituitary axis were obtained from the participants. To assess GH-IGF-I axis, glucagon stimulation tests were used. Rise in growth hormone during glucagon test was analyzed and the prevalence of newly diagnosed hormone deficiencies was evaluated. RESULTS: Mean age of all participants was 31±10 years. None of the 15 soccer players had GH deficiency. Mean rising factor of GH after stimulation with glucagon was 100 in all participants. We did not find signs of ACTH, TSH or LH/FSH deficiency in any player. CONCLUSIONS: In this small collective of soccer players we did not find playing soccer to be a risk factor for the development of GH-deficiency. According to our data screening for somatotrope deficiency is not necessary. Further investigations in larger cohorts are needed.
Assuntos
Atletas , Traumatismos em Atletas/sangue , Traumatismos Craniocerebrais/sangue , Hormônio do Crescimento Humano/sangue , Hipopituitarismo/sangue , Hormônios Hipofisários/sangue , Futebol , Adulto , Traumatismos em Atletas/complicações , Traumatismos Craniocerebrais/complicações , Glucagon , Humanos , Hipopituitarismo/etiologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
The aim of this study was the registration of digitized thin 2D sections of mouse vertebrae and tibiae used for histomorphometry of trabecular bone structure into 3D micro computed tomography (µCT) datasets of the samples from which the sections were prepared. Intensity-based and segmentation-based registrations (SegRegs) of 2D sections and 3D µCT datasets were applied. As the 2D sections were deformed during their preparation, affine registration for the vertebrae was used instead of rigid registration. Tibiae sections were additionally cut on the distal end, which subsequently undergone more deformation so that elastic registration was necessary. The Jaccard distance was used as registration quality measure. The quality of intensity-based registrations and SegRegs was practically equal, although precision errors of the elastic registration of segmentation masks in tibiae were lower, while those in vertebrae were lower for the intensity-based registration. Results of SegReg significantly depended on the segmentation of the µCT datasets. Accuracy errors were reduced from approximately 64% to 42% when applying affine instead of rigid transformations for the vertebrae and from about 43% to 24% when using B-spline instead of rigid transformations for the tibiae. Accuracy errors can also be caused by the difference in spatial resolution between the thin sections (pixel size: 7.25 µm) and the µCT data (voxel size: 15 µm). In the vertebrae, average deformations amounted to a 6.7% shortening along the direction of sectioning and a 4% extension along the perpendicular direction corresponding to 0.13-0.17 mm. Maximum offsets in the mouse tibiae were 0.16 mm on average.
Assuntos
Bases de Dados como Assunto , Imageamento Tridimensional/métodos , Coluna Vertebral/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Camundongos , Imagem MultimodalRESUMO
Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature.
Assuntos
Desenvolvimento Ósseo , Mucolipidoses/patologia , Osteoclastos/metabolismo , Animais , Conservadores da Densidade Óssea/farmacologia , Desenvolvimento Ósseo/genética , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Células Cultivadas , Pré-Escolar , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/patologia , Difosfonatos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucolipidoses/diagnóstico por imagem , Mucolipidoses/genética , Osteoclastos/citologia , Osteoclastos/patologia , Osteogênese , Ligante RANK/metabolismo , Radiografia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismoRESUMO
In this study we analyzed the trabecular bone micro-architecture in the inferomedial and superolateral subregions of the femoral neck in a group with hip fractures and a control group of elderly women, with aim to clarify the micro-structural basis of bone fragility. Proximal femora from 29 Caucasian female cadavers were collected at Institute of Forensic Medicine in Belgrade (15 women with hip fracture: age 79.5±8.5 yrs.; and 14 women without hip fractures: age 74.1±9.3 yrs.). The femoral neck section was scanned in dry conditions using a micro-computed tomography (Scanco µCT 40), at 70 kV, 114 µA, 300 ms integration time, 36 µm resolution, isotropic, 1024×1024 pixels per slice, automatically evaluating trabecular micro-architecture using the built-in program of the micro-CT with direct 3D morphometry. The samples were foam padded to avoid any movement artifacts during scanning. Analysis of the neck section in the fracture group compared to the control cases demonstrated significantly lower bone volume fraction (mean: 6.3% vs. 11.2%, p=0.002), lower connectivity density (0.33/mm(3) vs. 0.74/mm(3), p=0.019) and higher trabecular separation (0.87 mm vs. 0.83 mm, p=0.030). Division into the superolateral and inferomedial regions of interest revealed that the superolateral neck displayed even more differences in micro-architectural properties between the fracture and non-fracture groups. Namely, while in the inferomedial neck only bone volume fraction and degree of anisotropy displayed significant inter-group variability (lower BV/TV with higher degree of anisotropy in the fracture group), in the superolateral neck almost all parameters were different between the fracture cases and the controls, where the fracture group showed a lower trabecular bone volume fraction (3.6% vs. 8.2%, p=0.001), lower connectivity (0.21 vs. 0.63/mm(3), p=0.008), more rod like trabecular structure (SMI: 2.94 vs. 2.62, p=0.049), higher separation and the thinned trabeculae (Tb.Sp: 0.89 vs. 0.85 mm, p=0.013; Tb.Th: 0.17 vs. 0.20 mm, p=0.05). In addition, after adjusting for the effects of BV/TV, the majority of differences disappeared, demonstrating that the bone loss manifests itself via the changes in micro-architectural parameters: trabecular thinning, rising the spacing between individual trabeculae, reducing trabecular connectivity and accentuating trabecular perforations leading to predominance of rod-like trabecular elements. Preferential impairment of the superolateral neck trabecular structure and organization in women with hip fracture reveals the region-dependent micro-structural basis of bone fragility in elderly women.