Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641551

RESUMO

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Apoptose/genética , DNA/metabolismo , Dano ao DNA/genética , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Disceratose Congênita/patologia , Mutação , Estresse Oxidativo/genética , RNA/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
2.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497220

RESUMO

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Assuntos
Síndrome de Andersen , Humanos , Camundongos , Animais , Síndrome de Andersen/genética , Síndrome de Andersen/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Doença do Sistema de Condução Cardíaco , Dissulfetos , Fosfatidilinositóis/metabolismo
3.
J Org Chem ; 88(20): 14688-14696, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37774108

RESUMO

ß-Turns are one of the most common secondary structures found in proteins. In the interest of developing novel ß-turn inducers, a diastereopure azepane-derived quaternary amino acid has been incorporated into a library of simplified tetrapeptide models in order to assess the effect of the azepane position and peptide sequence on the stabilization of ß-turns. The conformational analysis of these peptides by molecular modeling, NMR spectroscopy, and X-ray crystallography showed that this azepane amino acid is an effective ß-turn inducer when incorporated at the i + 1 position. Moreover, the analysis of the supramolecular self-assembly of one of the ß-turn-containing peptide models in the solid state reveals that it forms a supramolecular helical arrangement while maintaining the ß-turn structure. The results here presented provide the basis for the use of this azepane quaternary amino acid as a strong ß-turn inducer in the search for novel peptide-based bioactive molecules, catalysts, and biomaterials.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Peptídeos/química , Proteínas , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Cristalografia por Raios X
4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768761

RESUMO

The mineralocorticoid receptor (MR) belongs to the steroid receptor subfamily of nuclear receptors. MR is a transcription factor key in regulating blood pressure and mineral homeostasis. In addition, it plays an important role in a broad range of biological and pathological conditions, greatly expanding its interest as a pharmacological target. Non-steroidal MR antagonists (MRAs) are of particular interest to avoid side effects and achieve tissue-specific modulation of the receptor. The 1,4-dihydropyridine (1,4-DHP) ring has been identified as an appropriate scaffold to develop non-steroidal MRAs. We report the identification of a novel series of 1,4-DHP that has been guided by structure-based drug design, focusing on the less explored DHP position 2. Interestingly, substituents at this position might interfere with MR helix H12 disposition, which is essential for the recruitment of co-regulators. Several of the newly synthesized 1,4-DHPs show interesting properties as MRAs and have a good selectivity profile. These 1,4-DHPs promote MR nuclear translocation with less efficiency than the natural agonist aldosterone, which explains, at least in part, its antagonist character. Molecular dynamic studies are suggestive of several derivatives interfering with the disposition of H12 in the agonist-associated conformation, and thus, they might stabilize an MR conformation unable to recruit co-activators.


Assuntos
Di-Hidropiridinas , Antagonistas de Receptores de Mineralocorticoides , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/química , Aldosterona/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico
5.
Med Res Rev ; 42(6): 2168-2203, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35976012

RESUMO

The cation nonselective channel TRPM8 is activated by multiple stimuli, including moderate cold and various chemical compounds (i.e., menthol and icilin [Fig. 1], among others). While research continues growing on the understanding of the physiological involvement of TRPM8 channels and their role in various pathological states, the information available on its activation mechanisms has also increased, supported by mutagenesis and structural studies. This review compiles known information on specific mutations of channel residues and their consequences on channel viability and function. Besides, the comparison of sequence of animals living in different environments, together with chimera and mutagenesis studies are helping to unravel the mechanism of adaptation to different temperatures. The results of mutagenesis studies, grouped by different channel regions, are compared with the current knowledge of TRPM8 structures obtained by cryo-electron microscopy. Trying to make this review self-explicative and highly informative, important residues for TRPM8 function are summarized in a figure, and mutants, deletions and chimeras are compiled in a table, including also the observed effects by different methods of activation and the corresponding references. The information provided by this review may also help in the design of new ligands for TRPM8, an interesting biological target for therapeutic intervention.


Assuntos
Mentol , Canais de Cátion TRPM , Animais , Microscopia Crioeletrônica , Ligantes , Mentol/farmacologia , Mutação , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética
6.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012438

RESUMO

The transient outward potassium current (Itof) is generated by the activation of KV4 channels assembled with KChIP2 and other accessory subunits (DPP6 and KCNE2). To test the hypothesis that these subunits modify the channel pharmacology, we analyzed the electrophysiological effects of (3-(2-(3-phenoxyphenyl)acetamido)-2-naphthoic acid) (IQM-266), a new KChIP2 ligand, on the currents generated by KV4.3/KChIP2, KV4.3/KChIP2/DPP6 and KV4.3/KChIP2/KCNE2 channels. CHO cells were transiently transfected with cDNAs codifying for different proteins (KV4.3/KChIP2, KV4.3/KChIP2/DPP6 or KV4.3/KChIP2/KCNE2), and the potassium currents were recorded using the whole-cell patch-clamp technique. IQM-266 decreased the maximum peak of KV4.3/KChIP2, KV4.3/KChIP2/DPP6 and KV4.3/KChIP2/KCNE2 currents, slowing their time course of inactivation in a concentration-, voltage-, time- and use-dependent manner. IQM-266 produced an increase in the charge in KV4.3/KChIP2 channels that was intensified when DPP6 was present and abolished in the presence of KCNE2. IQM-266 induced an activation unblocking effect during the application of trains of pulses to cells expressing KV4.3/KChIP2 and KV4.3/KChIP2/KCNE2, but not in KV4.3/KChIP2/DPP6 channels. Overall, all these results are consistent with a preferential IQM-266 binding to an active closed state of Kv4.3/KChIP2 and Kv4.3/KChIP2/KCNE2 channels, whereas in the presence of DPP6, IQM-266 binds preferentially to an inactivated state. In conclusion, DPP6 and KCNE2 modify the pharmacological response of KV4.3/KChIP2 channels to IQM-266.


Assuntos
Proteínas Interatuantes com Canais de Kv , Canais de Potássio Shal , Animais , Cricetinae , Cricetulus , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo
7.
Bioorg Chem ; 115: 105231, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34388485

RESUMO

The analgesic peptide DD04107 (Pal-EEMQRR-NH2) and its acetylated analogue inhibit α-calcitonin gene-related peptide (α-CGRP) exocytotic release from primary sensory neurons. Examining the crystal structure of the SNARE-Synaptotagmin-1(Syt1) complex, we hypothesized that these peptides could inhibit neuronal exocytosis by binding to Syt1, hampering at least partially its interaction with the SNARE complex. To address this hypothesis, we first interrogate the role of individual side-chains on the inhibition of α-CGRP release, finding that E1, M3, Q4 and R6 residues were crucial for activity. CD and NMR conformational analysis showed that linear peptides have tendency to adopt α-helical conformations, but the results with cyclic analogues indicated that this secondary structure is not needed for activity. Isothermal titration calorimetry (ITC) measurements demonstrate a direct interaction of some of these peptides with Syt1-C2B domain, but not with Syt7-C2B region, indicating selectivity. As expected for a compound able to inhibit α-CGRP release, cyclic peptide derivative Pal-E-cyclo[EMQK]R-NH2 showed potent in vivo analgesic activity, in a model of inflammatory pain. Molecular dynamics simulations provided a model consistent with KD values for the interaction of peptides with Syt1-C2B domain, and with their biological activity. Altogether, these results identify Syt1 as a potential new analgesic target.


Assuntos
Analgésicos/farmacologia , Lipopeptídeos/farmacologia , Dor/tratamento farmacológico , Sinaptotagmina I/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/química , Animais , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Lipopeptídeos/síntese química , Lipopeptídeos/química , Masculino , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Dor/metabolismo , Relação Estrutura-Atividade , Sinaptotagmina I/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445208

RESUMO

The transient receptor potential melastatin subtype 8 (TRPM8) is a cold sensor in humans, activated by low temperatures (>10, <28 °C), but also a polymodal ion channel, stimulated by voltage, pressure, cooling compounds (menthol, icilin), and hyperosmolarity. An increased number of experimental results indicate the implication of TRPM8 channels in cold thermal transduction and pain detection, transmission, and maintenance in different tissues and organs. These channels also have a repercussion on different kinds of life-threatening tumors and other pathologies, which include urinary and respiratory tract dysfunctions, dry eye disease, and obesity. This compendium firstly covers newly described papers on the expression of TRPM8 channels and their correlation with pathological states. An overview on the structural knowledge, after cryo-electron microscopy success in solving different TRPM8 structures, as well as some insights obtained from mutagenesis studies, will follow. Most recently described families of TRPM8 modulators are also covered, along with a section of molecules that have reached clinical trials. To finalize, authors provide an outline of the potential prospects in the TRPM8 field.


Assuntos
Temperatura Baixa , Canais de Cátion TRPM , Sensação Térmica , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , Humanos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/genética , Doenças Respiratórias/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Doenças Urológicas/tratamento farmacológico , Doenças Urológicas/genética , Doenças Urológicas/metabolismo
9.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572566

RESUMO

Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer's disease. KV4.x channels need to assemble with other accessory subunits (ß) to fully reproduce the ITO and ISA currents. ß Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.


Assuntos
Doença de Alzheimer/fisiopatologia , Canalopatias/fisiopatologia , Epilepsia/fisiopatologia , Proteínas Interatuantes com Canais de Kv/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Esquizofrenia/fisiopatologia , Canais de Potássio Shal/farmacologia , Doença de Alzheimer/etiologia , Sequência de Aminoácidos , Canalopatias/complicações , Epilepsia/etiologia , Coração/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Potenciais da Membrana , Modelos Moleculares , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Esquizofrenia/etiologia , Alinhamento de Sequência , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo
10.
J Mol Cell Cardiol ; 110: 61-69, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28739325

RESUMO

KV7.1 and KCNE1 co-assemble to give rise to the IKs current, one of the most important repolarizing currents of the cardiac action potential. Its relevance is underscored by the identification of >500 mutations in KV7.1 and, at least, 36 in KCNE1, that cause Long QT Syndrome (LQTS). The aim of this study was to characterize the biophysical and cellular consequences of the D242N KV7.1 mutation associated with the LQTS. The mutation is located in the S4 transmembrane segment, within the voltage sensor of the KV7.1 channel, disrupting the conserved charge balance of this region. Perforated patch-clamp experiments show that, unexpectedly, the mutation did not disrupt the voltage-dependent activation but it removed the inactivation and slowed the activation kinetics of D242N KV7.1 channels. Biotinylation of cell-surface protein and co-immunoprecipitation experiments revealed that neither plasma membrane targeting nor co-assembly between KV7.1 and KCNE1 was altered by the mutation. However, the association of D242N KV7.1 with KCNE1 strongly shifted the voltage dependence of activation to more depolarized potentials (+50mV), hindering IKs current at physiologically relevant membrane potentials. Both functional and computational analysis suggest that the clinical phenotype of the LQTS patients carrying the D242N mutation is due to impaired action potential adaptation to exercise and, in particular, to increase in heart rate. Moreover, our data identify D242 aminoacidic position as a potential residue involved in the KCNE1-mediated regulation of the voltage dependence of activation of the KV7.1 channel.


Assuntos
Aminoácidos/genética , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Mutação/genética , Potenciais de Ação , Adaptação Fisiológica , Sequência de Aminoácidos , Eletrocardiografia , Feminino , Células HEK293 , Células HeLa , Coração/fisiopatologia , Heterozigoto , Humanos , Canal de Potássio KCNQ1/química , Síndrome do QT Longo/diagnóstico por imagem , Síndrome do QT Longo/fisiopatologia , Mutação com Perda de Função , Masculino , Transporte Proteico , Adulto Jovem
11.
Chemistry ; 21(6): 2489-500, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25522111

RESUMO

Enantiopure ß-amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4-carboxy-2-oxoazepane α,α-amino acids to lead to 2'-oxopiperidine-containing ß(2,3,3) -amino acids, upon basic or acid hydrolysis of the 2-oxoazepane α,α-amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six-membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4-carboxylic acid substituted 2-oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2-oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.

12.
Org Biomol Chem ; 13(18): 5195-201, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25849279

RESUMO

A suitably protected Orn-derived (3S,4S)-ß-lactam was used as common intermediate in the synthesis of conformationally constrained (3S,4S)-2-oxoazepane α,α- and (2S,3S)-2-oxopiperidine-ß(2,3,3)-amino acid derivatives. Compared to alternative procedures using an N-p-methoxybenzyl group at the 2-azetidinone, the incorporation of a p-methoxyphenyl moiety is crucial for the excellent stereochemical outcomes in the preparation of these heterocyclic amino acids. Chemoselective 7- or 6-exo-trig cyclization was achieved through alternative sequences of Pmp-deprotection/Boc-activation, followed by inter- and intramolecular ß-lactam ring opening, respectively.


Assuntos
Aminoácidos/química , Compostos Heterocíclicos/química , beta-Lactamas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo
14.
ChemMedChem ; : e202400511, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387456

RESUMO

The Spanish Society of Medicinal Chemistry (Sociedad Española de Química Terapéutica SEQT), founded in 1977, aims to advance pharmaceutical research and education in Spain, collaborating with academia, industry, and public entities. It was initially linked with the Institute of Medicinal Chemistry from Spanish National Research Council (IQM-CSIC), emphasizing the independence of medicinal chemistry as a discipline. SEQT's presidency rotates between representatives from universities, research institutes, and industry, ensuring diverse perspectives. With around 500 members, SEQT represents sectors including universities, CSIC, and industry, with a notable presence of early-career researchers. The Society actively participates in the European Federation for Medicinal chemistry and Chemical biology (EFMC). SEQT organizes conferences, summer schools, and mini symposia to facilitate networking and knowledge exchange among professionals. To support early-career scientists, SEQT organizes symposia and awards, recognizing achievements in drug discovery. It fosters mentorship opportunities and engages with international networks like EFMC-YSN. In 2023, SEQT established its Early Career Scientist (SEQT-ECS) group to provide tailored support and resources. With over 40 years of experience, SEQT continues to evolve, embracing social media and adapting to changes in medicinal chemistry and chemical biology. It remains committed to supporting its members and advancing research to address human health challenges.

15.
Org Biomol Chem ; 11(11): 1896-905, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23381088

RESUMO

The design, synthesis, conformational studies and binding affinity for VEGF receptors of a collection of linear and cyclic peptide analogues of the N-terminal α-helix fragments 13-25 of VEGF and 1-13 of Vammin are described. Linear 13(14)-mer peptides were designed with the help of an AGADIR algorithm and prepared following peptide solid-phase synthetic protocols. Cyclic peptide derivatives were prepared on-resin from linear precursors with conveniently located Glu and Lys residues, by the formation of amide linkages. Conformational analysis, CD and NMR, showed that most synthesized peptides have a clear tendency to be structured as α-helices in solution. Some of the peptides were able to bind a VEGFR-1 receptor with moderate affinity. In addition to the described key residues (Phe17, Tyr21 and Tyr25), Val14 and Val20 seem to be relevant for affinity.


Assuntos
Peptídeos/química , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/química , Venenos de Víboras/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/síntese química , Peptídeos/metabolismo , Conformação Proteica , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Pharmaceutics ; 15(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376057

RESUMO

Cromoglycate (SCG) is widely used for allergy processes, and inflammatory states acting as a mast cell membrane stabilizer that inhibits the histamine and mediator release. Currently, SCG topical extemporaneous compounding formulations are prepared in hospitals and community pharmacies, as no industrial fabricated medicines are available in Spain. The stability of these formulations is unknown. Additionally, there are no clear guidelines on which concentration and vehicle are more suitable to enhance permeation across the skin. In this work, the stability of commonly prescribed topical SCG formulations in clinical practice was evaluated. Different vehicles commonly employed by pharmacists daily for formulating topical SCG were investigated (Eucerinum, Acofar Creamgel, and Beeler's base) at different concentrations, ranging from 0.2 to 2%. The stability of topical extemporaneous compounded SCG formulations can be extended for up to three months at room temperature (25 °C). Creamgel 2% formulations significantly improved the topical permeation of SCG across the skin, being 4.5-fold higher than formulations prepared with Beeler's base. The reason attributed to this performance can be related to the lower droplet size formed upon dilution in aqueous media combined with a lower viscosity, which facilitates its application and extensibility on the skin. The higher the SCG concentration in Creamgel formulations, the higher the permeability across both synthetic membranes and pig skin (p-value < 0.05). These preliminary results can be used as a guide to prompt a rational prescription of topical SCG formulations.

17.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333254

RESUMO

Background: Andersen-Tawil Syndrome Type 1 (ATS1) is a rare heritable disease caused by mutations in the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys122-to-Cys154 disulfide bond in the Kir2.1 channel structure is crucial for proper folding, but has not been associated with correct channel function at the membrane. We tested whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing the open state of the channel. Methods and Results: We identified a Kir2.1 loss-of-function mutation in Cys122 (c.366 A>T; p.Cys122Tyr) in a family with ATS1. To study the consequences of this mutation on Kir2.1 function we generated a cardiac specific mouse model expressing the Kir2.1C122Y mutation. Kir2.1C122Y animals recapitulated the abnormal ECG features of ATS1, like QT prolongation, conduction defects, and increased arrhythmia susceptibility. Kir2.1C122Y mouse cardiomyocytes showed significantly reduced inward rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking ability and localization at the sarcolemma and the sarcoplasmic reticulum. Kir2.1C122Y formed heterotetramers with wildtype (WT) subunits. However, molecular dynamic modeling predicted that the Cys122-to-Cys154 disulfide-bond break induced by the C122Y mutation provoked a conformational change over the 2000 ns simulation, characterized by larger loss of the hydrogen bonds between Kir2.1 and phosphatidylinositol-4,5-bisphosphate (PIP2) than WT. Therefore, consistent with the inability of Kir2.1C122Y channels to bind directly to PIP2 in bioluminescence resonance energy transfer experiments, the PIP2 binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch-clamping the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing PIP2 concentrations. Conclusion: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential to channel function. We demonstrated that ATS1 mutations that break disulfide bonds in the extracellular domain disrupt PIP2-dependent regulation, leading to channel dysfunction and life-threatening arrhythmias.

18.
J Org Chem ; 77(21): 9833-9, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23057671

RESUMO

A simple method for the synthesis of an azepane quaternary amino acid in enantiopure form is described. Theoretical, NMR, and X-ray studies indicated that this azepane-derived amino acid is an effective stabilizer of 3(10) helical structures in short peptides.


Assuntos
Aminoácidos/química , Azepinas/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
19.
Bioorg Med Chem Lett ; 22(1): 444-8, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22119467

RESUMO

Based on ß-turn-like BDNF loops 2 and 4, involved in receptor interaction, cyclic peptide replicas were designed, synthesized and tested. In addition to the native turn residues, the cyclic peptides include a linker unit between the N- and C-termini, selected by molecular modeling among various non-proteinogenic cyclic amino acids. NMR conformational studies showed that most of the cyclic peptides were able to adopt turn-like structures. Several of the analogues displayed significant inhibition of the BDNF-induced TrkB receptor phosphorylation, and hence could be useful templates for developing improved antagonists for this receptor.


Assuntos
Aminoácidos Cíclicos/química , Fator Neurotrófico Derivado do Encéfalo/química , Receptor trkB/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Desenho de Fármacos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Conformação Molecular , Peptídeos/química , Peptídeos Cíclicos/química , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
20.
J Allergy Clin Immunol Pract ; 10(8): 2039-2051, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777651

RESUMO

BACKGROUND: Since 2010, patients and physicians have collaborated to understand unmet needs of patients with mast cell diseases, incorporating mastocytosis and mast cell activation disorders, which include mast cell activation syndromes. OBJECTIVE: This Open Innovation in Science project aims to expand understanding of the needs of patients affected by mast cell diseases, and encourage global communication among patient advocacy groups, physicians, researchers, industry, and government. A major aim is to support the scientific community's efforts to improve diagnosis, management, therapy, and patients' quality of life by addressing unmet needs. METHODS: In collaboration with mast cell disease specialists, 13 patient advocacy groups from 12 countries and regions developed lists of top patient needs. A core team of leaders from patient advocacy groups collected and analyzed the data and proposed possible actions to address patient needs. RESULTS: Findings identified similarities and differences among participating countries in unmet needs between patients with mastocytosis and those with mast cell activation syndromes. Issues emphasized struggles relating to the nature and rarity of mast cell diseases, their impact on quality of life, the diagnostic process, access to appropriate care, more effective treatment, and the need for research. CONCLUSIONS: Solutions vary across countries because situations differ, in particular regarding the existence of and access to centers of excellence and reference centers. Multifaceted mast cell activation syndrome barriers necessitate innovative approaches to improve access to appropriate care. The outcomes of this project should greatly support scientists and clinicians in their efforts to improve diagnosis, management, and treatment of patients with mastocytosis and mast cell activation disorders.


Assuntos
Transtornos da Ativação de Mastócitos , Mastocitose , Humanos , Mastócitos , Mastocitose/diagnóstico , Mastocitose/terapia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA