Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(2): H357-H369, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038720

RESUMO

Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional Fxn allele and one floxed-out/null allele. These mice quickly develop cardiomyopathy that becomes fatal by 9-11 wk of age. Here, we generated a cardiac-specific model with floxed Fxn allele homozygosity (MCK-Fxnflox/flox). MCK-Fxnflox/flox mice were phenotypically normal at 9 wk of age, despite no detectable FXN protein expression. Between 13 and 15 wk of age, these mice began to display progressive cardiomyopathy, including decreased ejection fraction and fractional shortening and increased left ventricular mass. MCK-Fxnflox/flox mice began to lose weight around 16 wk of age, characteristically associated with heart failure in other cardiac-specific FA models. By 18 wk of age, MCK-Fxnflox/flox mice displayed elevated markers of Fe-S deficiency, cardiac stress and injury, and cardiac fibrosis. This modified model reproduced important pathophysiological and biochemical features of FA over a longer timescale than previous cardiac-specific mouse models, offering a larger window for studying potential therapeutics.NEW & NOTEWORTHY Previous cardiac-specific frataxin knockout models exhibit rapid and fatal cardiomyopathy by 9 wk of age. This severe phenotype poses challenges for the design and execution of intervention studies. We introduce an alternative cardiac-specific model, MCK-Fxnflox/flox, with increased longevity and delayed onset of all major phenotypes. These phenotypes develop to the same severity as previous models. Thus, this new model provides the same cardiomyopathy-associated mortality with a larger window for potential studies.


Assuntos
Cardiomiopatias , Ataxia de Friedreich , Humanos , Camundongos , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Alelos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Frataxina , Miócitos Cardíacos/metabolismo
2.
Mol Genet Metab ; 128(3): 342-351, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30660387

RESUMO

Non-syndromic microcytic congenital sideroblastic anemia (cSA) is predominantly caused by defective genes encoding for either ALAS2, the first enzyme of heme biosynthesis pathway or SLC25A38, the mitochondrial importer of glycine, an ALAS2 substrate. Herein we explored a new case of cSA with two mutations in GLRX5, a gene for which only two patients have been reported so far. The patient was a young female with biallelic compound heterozygous mutations in GLRX5 (p.Cys67Tyr and p.Met128Lys). Three-D structure analysis confirmed the involvement of Cys67 in the coordination of the [2Fe2S] cluster and suggested a potential role of Met128 in partner interactions. The protein-level of ferrochelatase, the terminal-enzyme of heme process, was increased both in patient-derived lymphoblastoid and CD34+ cells, however, its activity was drastically decreased. The activity of ALAS2 was found altered and possibly related to a defect in the biogenesis of its co-substrate, the succinyl-CoA. Thus, the patient exhibits both a very low ferrochelatase activity without any accumulation of porphyrins precursors in contrast to what is reported in erythropoietic protoporphyria with solely impaired ferrochelatase activity. A significant oxidative stress was evidenced by decreased reduced glutathione and aconitase activity, and increased MnSOD protein expression. This oxidative stress depleted and damaged mtDNA, decreased complex I and IV activities and depleted ATP content. Collectively, our study demonstrates the key role of GLRX5 in modulating ALAS2 and ferrochelatase activities and in maintaining mitochondrial function.


Assuntos
5-Aminolevulinato Sintetase/genética , Anemia Sideroblástica/genética , Ferroquelatase/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Glutarredoxinas/genética , Heme/biossíntese , Mutação de Sentido Incorreto , 5-Aminolevulinato Sintetase/metabolismo , Aconitato Hidratase/metabolismo , Adolescente , Sequência de Aminoácidos , Anemia Sideroblástica/enzimologia , Linhagem Celular Transformada , Feminino , Ferroquelatase/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Glutationa/metabolismo , Humanos , Mitocôndrias/enzimologia , Estresse Oxidativo , Linhagem , Estrutura Terciária de Proteína
3.
J Biol Chem ; 289(41): 28070-86, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25012650

RESUMO

In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.


Assuntos
Proteína 1 Reguladora do Ferro/química , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HeLa , Células Hep G2 , Homeostase , Humanos , Peróxido de Hidrogênio/química , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/química , Oxirredução , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
4.
J Am Chem Soc ; 135(2): 733-40, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23265191

RESUMO

Iron-sulfur (Fe-S) cluster-containing proteins are essential components of cells. In eukaryotes, Fe-S clusters are synthesized by the mitochondrial iron-sulfur cluster (ISC) machinery and the cytosolic iron-sulfur assembly (CIA) system. In the mammalian ISC machinery, preassembly of the Fe-S cluster on the scaffold protein (ISCU) involves a cysteine desulfurase complex (NFS1/ISD11) and frataxin (FXN), the protein deficient in Friedreich's ataxia. Here, by comparing the biochemical and spectroscopic properties of quaternary (ISCU/NFS1/ISD11/FXN) and ternary (ISCU/NFS1/ISD11) complexes, we show that FXN stabilizes the quaternary complex and controls iron entry to the complex through activation of cysteine desulfurization. Furthermore, we show for the first time that in the presence of iron and L-cysteine, an [Fe(4)S(4)] cluster is formed within the quaternary complex that can be transferred to mammalian aconitase (mACO2) to generate an active enzyme. In the absence of FXN, although the ternary complex can assemble an Fe-S cluster, the cluster is inefficiently transferred to ACO2. Taken together, these data help to unravel further the Fe-S cluster assembly process and the molecular basis of Friedreich's ataxia.


Assuntos
Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/química , Ferro/metabolismo , Enxofre/metabolismo , Animais , Complexos de Coordenação/química , Humanos , Modelos Moleculares , Frataxina
5.
Mol Ther Methods Clin Dev ; 24: 367-378, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35252470

RESUMO

Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction. While evaluating an AAV9-based frataxin gene therapy using a chicken ß-actin promoter, we showed that toxic overexpression of frataxin could be reached in mouse liver and heart with doses between 1 × 1013 and 1 × 1014 vg/kg. In a mouse model of cardiac disease, these doses only corrected cardiac dysfunction partially and transiently and led to adverse findings associated with iron-sulfur cluster deficiency in liver. We demonstrated that toxicity required frataxin's primary function by using a frataxin construct bearing the N146K mutation, which impairs binding to the iron-sulfur cluster core complex. At the lowest tested dose, we observed moderate liver toxicity that was accompanied by progressive loss of transgene expression and liver regeneration. Together, our data provide insights into the toxicity of frataxin overexpression that should be considered in the development of a gene therapy approach for Friedreich's ataxia.

6.
Hum Mol Genet ; 17(22): 3521-31, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18725397

RESUMO

Deficiency in the nuclear-encoded mitochondrial protein frataxin causes Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associating spinocerebellar ataxia and cardiomyopathy. Although the exact function of frataxin is still a matter of debate, it is widely accepted that frataxin is a mitochondrial iron chaperone involved in iron-sulfur cluster and heme biosynthesis. Frataxin is synthesized as a precursor polypeptide, directed to the mitochondrial matrix where it is proteolytically cleaved by the mitochondrial processing peptidase to the mature form via a processing intermediate. The mature form was initially reported to be encoded by amino acids 56-210 (m(56)-FXN). However, two independent reports have challenged these studies describing two different forms encoded by amino acids 78-210 (m(78)-FXN) and 81-210 (m(81)-FXN). Here, we provide evidence that mature human frataxin corresponds to m(81)-FXN, and can rescue the lethal phenotype of fibroblasts completely deleted for frataxin. Furthermore, our data demonstrate that the migration profile of frataxin depends on the experimental conditions, a behavior which most likely contributed to the confusion concerning the endogenous mature frataxin. Interestingly, we show that m(56)-FXN and m(78)-FXN can be generated when the normal maturation process of frataxin is impaired, although the physiological relevance is not clear. Furthermore, we determine that the d-FXN form, previously reported to be a degradation product, corresponds to m(78)-FXN. Finally, we demonstrate that all frataxin isoforms are generated and localized within the mitochondria. The clear identification of the N-terminus of mature FXN is an important step for designing therapeutic approaches for FRDA based on frataxin replacement.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Eletroforese em Gel de Poliacrilamida , Fibroblastos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Frataxina
7.
Nat Commun ; 10(1): 2210, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101807

RESUMO

The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.


Assuntos
Liases de Carbono-Enxofre/ultraestrutura , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/ultraestrutura , Proteínas Ferro-Enxofre/ultraestrutura , Mitocôndrias/ultraestrutura , Liases de Carbono-Enxofre/isolamento & purificação , Liases de Carbono-Enxofre/metabolismo , Microscopia Crioeletrônica , Ataxia de Friedreich/genética , Ferro/metabolismo , Proteínas de Ligação ao Ferro/isolamento & purificação , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/isolamento & purificação , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Enxofre/metabolismo , Zinco/metabolismo , Frataxina
8.
Medchemcomm ; 10(2): 209-220, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30881609

RESUMO

The mitochondrial acyl carrier protein (human ACPM, yeast Acp1) is an essential mitochondrial protein. Through binding of nascent acyl chains on the serine (S112)-bound 4'-phosphopantetheine (4'-PP) cofactor, ACPM is involved in mitochondrial fatty acid synthesis and lipoic acid biogenesis. Recently, yeast Acp1 was found to interact with several mitochondrial complexes, including the iron-sulfur (Fe-S) cluster biosynthesis and respiratory complexes, via the binding to LYRM proteins, a family of proteins involved in assembly/stability of complexes. Importantly, the interaction of LYRM proteins with Acp1 was shown to be essential in maintaining integrity of mitochondrial complexes. In human, recent structures show that ACPM binding to LYRM proteins involves acyl chains attached to the 4'-PP cofactor. Here, we performed an detailed characterization of the mitochondrial interactome of human ACPM by mass spectrometry (MS) and demonstrate the crucial role of the 4'-PP cofactor in most of ACPM interactions. Specifically, we show that ACPM interacts with endogenous Fe-S cluster complex components through binding of the LYRM protein ISD11/LYRM4. Using knockdown experiments, we further determine that ACPM is essential for the stability of mitochondrial respiratory complexes I, II and III, as well as the Fe-S cluster biosynthesis complex. Finally, using native MS and a top-down MS approach, we show that C14, C16 and C18 3-keto-acyl chains on ACPM are implicated in binding to ISD11 through analysis of the recombinant ACPM-ISD11 complex. Taken together, our data provide novel understanding of the role of 4'-PP- and long acyl chains-dependent interactions in human ACPM function.

9.
Stem Cell Res Ther ; 10(1): 203, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286988

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is an autosomal recessive disease caused by a non-coding mutation in the first intron of the frataxin (FXN) gene that suppresses its expression. Compensatory hypertrophic cardiomyopathy, dilated cardiomyopathy, and conduction system abnormalities in FRDA lead to cardiomyocyte (CM) death and fibrosis, consequently resulting in heart failure and arrhythmias. Murine models have been developed to study disease pathology in the past two decades; however, differences between human and mouse physiology and metabolism have limited the relevance of animal studies in cardiac disease conditions. To bridge this gap, we aimed to generate species-specific, functional in vitro experimental models of FRDA using 2-dimensional (2D) and 3-dimensional (3D) engineered cardiac tissues from FXN-deficient human pluripotent stem cell-derived ventricular cardiomyocytes (hPSC-hvCMs) and to compare their contractile and electrophysiological properties with healthy tissue constructs. METHODS: Healthy control and FRDA patient-specific hPSC-hvCMs were derived by directed differentiation using a small molecule-based protocol reported previously. We engineered the hvCMs into our established human ventricular cardiac tissue strip (hvCTS) and human ventricular cardiac anisotropic sheet (hvCAS) models, and functional assays were performed on days 7-17 post-tissue fabrication to assess the electrophysiology and contractility of FRDA patient-derived and FXN-knockdown engineered tissues, in comparison with healthy controls. To further validate the disease model, forced expression of FXN was induced in FXN-deficient tissues to test if disease phenotypes could be rescued. RESULTS: Here, we report for the first time the generation of human engineered tissue models of FRDA cardiomyopathy from hPSCs: FXN-deficient hvCTS displayed attenuated developed forces (by 70-80%) compared to healthy controls. High-resolution optical mapping of hvCAS with reduced FXN expression also revealed electrophysiological defects consistent with clinical observations, including action potential duration prolongation and maximum capture frequency reduction. Interestingly, a clear positive correlation between FXN expression and contractility was observed (ρ > 0.9), and restoration of FXN protein levels by lentiviral transduction rescued contractility defects in FXN-deficient hvCTS. CONCLUSIONS: We conclude that human-based in vitro cardiac tissue models of FRDA provide a translational, disease-relevant biomimetic platform for the evaluation of novel therapeutics and to provide insight into FRDA disease progression.


Assuntos
Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Potenciais de Ação/fisiologia , Cardiomiopatias/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Humanos , Frataxina
10.
Proteomics ; 8(11): 2244-55, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18452231

RESUMO

To identify proteins involved in cellular adaptive responses to zinc, a comparative proteome analysis between a previously developed high zinc- and cadmium-resistant human epithelial cell line (high zinc-resistant HeLa cells, HZR) and the parental HeLa cells has been carried out. Differentially produced proteins included cochaperones, proteins associated with oxido-reductase activities, and ubiquitin. Biochemical pathways to which these proteins belong were probed for their involvement in the resistance of both cell lines against cadmium toxicity. Among ER stressors, thapsigargin sensitized HZR cells, but not HeLa cells, to cadmium toxicity more acutely than tunicamycin, implying that these cells heavily relied on proper intracellular calcium distribution. The similar sensitivity of both HeLa and HZR cells to inhibitors of the proteasome, such as MG-132 or lactacystin, excluded improved proteasome activity as a mechanism associated with zinc adaptation of HZR cells. The enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) was overproduced in HZR cells as compared to HeLa cells. It transforms HPP to homogentisate in the second step of tyrosine catabolism. Inhibition of HPPD decreased the resistance of HZR cells against cadmium, but not that of HeLa cells, suggesting that adaptation to zinc overload and increased HPP removal are linked in HZR cells.


Assuntos
Cádmio/toxicidade , Proteômica/métodos , Zinco/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Cádmio/química , Cádmio/farmacologia , Intoxicação por Cádmio/metabolismo , Anidrases Carbônicas/metabolismo , Sobrevivência Celular , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Células Epiteliais/citologia , Células HeLa , Humanos , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
11.
Biochimie ; 152: 211-218, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031876

RESUMO

Human de novo iron-sulfur (Fe-S) assembly complex consists of cysteine desulfurase NFS1, accessory protein ISD11, acyl carrier protein ACP, scaffold protein ISCU, and allosteric activator frataxin (FXN). FXN binds the NFS1-ISD11-ACP-ISCU complex (SDAU), to activate the desulfurase activity and Fe-S cluster biosynthesis. In the absence of FXN, the NFS1-ISD11-ACP (SDA) complex was reportedly inhibited by binding of recombinant ISCU. Recent studies also reported a substitution at position Met141 on the yeast ISCU orthologue Isu, to Ile, Leu, Val, or Cys, could bypass the requirement of FXN for Fe-S cluster biosynthesis and cell viability. Here, we show that recombinant human ISCU binds zinc(II) ion, as previously demonstrated with the E. coli orthologue IscU. Surprisingly, the relative proportion between zinc-bound and zinc-depleted forms varies among purification batches. Importantly the presence of zinc in ISCU impacts SDAU desulfurase activity. Indeed, removal of zinc(II) ion from ISCU causes a moderate but significant increase in activity compared to SDA alone, and FXN can activate both zinc-depleted and zinc-bound forms of ISCU complexed to SDA. Taking into consideration the inhibition of desulfurase activity by zinc-bound ISCU, we characterized wild type ISCU and the M140I, M140L, and M140V variants under both zinc-bound and zinc-depleted conditions, and did not observe significant differences in the biochemical and biophysical properties between wild-type and variants. Importantly, in the absence of FXN, ISCU variants behaved like wild-type and did not stimulate the desulfurase activity of the SDA complex. This study therefore identifies an important regulatory role for zinc-bound ISCU in modulation of the human Fe-S assembly system in vitro and reports no 'FXN bypass' effect on mutations at position Met140 in human ISCU. Furthermore, this study also calls for caution in interpreting studies involving recombinant ISCU by taking into consideration the influence of the bound zinc(II) ion on SDAU complex activity.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Metionina/genética , Zinco/metabolismo , Regulação Alostérica , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Frataxina
12.
FEBS J ; 274(4): 1083-92, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17244191

RESUMO

Aconitases are iron-sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase-iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron-sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and alpha-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of alpha-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1(-) mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron-sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1-KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family.


Assuntos
Proteína 1 Reguladora do Ferro/química , Proteína 1 Reguladora do Ferro/metabolismo , Aconitato Hidratase/metabolismo , Citosol/metabolismo , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Proteína 1 Reguladora do Ferro/análise , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Espectrometria de Massas , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dobramento de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nat Commun ; 8: 15124, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492233

RESUMO

Mammalian A-type proteins, ISCA1 and ISCA2, are evolutionarily conserved proteins involved in iron-sulfur cluster (Fe-S) biogenesis. Recently, it was shown that ISCA1 and ISCA2 form a heterocomplex that is implicated in the maturation of mitochondrial Fe4S4 proteins. Here we report that mouse ISCA1 and ISCA2 are Fe2S2-containing proteins that combine all features of Fe-S carrier proteins. We use biochemical, spectroscopic and in vivo approaches to demonstrate that despite forming a complex, ISCA1 and ISCA2 establish discrete interactions with components of the late Fe-S machinery. Surprisingly, knockdown experiments in mouse skeletal muscle and in primary cultures of neurons suggest that ISCA1, but not ISCA2, is required for mitochondrial Fe4S4 proteins biogenesis. Collectively, our data suggest that cellular processes with different requirements for ISCA1, ISCA2 and ISCA1-ISCA2 complex seem to exist.


Assuntos
Aconitato Hidratase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Células Receptoras Sensoriais/enzimologia , Aconitato Hidratase/genética , Animais , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas Ferro-Enxofre/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriais/citologia , Espectroscopia de Mossbauer
14.
Biochem J ; 388(Pt 1): 143-50, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15636585

RESUMO

In iron-starved cells, IRP1 (iron regulatory protein 1) binds to mRNA iron-responsive elements and controls their translation or stability. In response to increased iron levels, RNA-binding is inhibited on assembly of a cubane [4Fe-4S] cluster, which renders IRP1 to a cytosolic aconitase. Phosphorylation at conserved serine residues may also regulate the activities of IRP1. We demonstrate that Ser-711 is a phosphorylation site in HEK-293 cells (human embryonic kidney 293 cells) treated with PMA, and we study the effects of the S711E (Ser-711-->Glu) mutation on IRP1 functions. A highly purified preparation of recombinant IRP1(S711E) displays negligible IRE-binding and aconitase activities. It appears that the first step in the aconitase reaction (conversion of citrate into the intermediate cis-aconitate) is more severely affected, as recombinant IRP1(S711E) retains approx. 45% of its capacity to catalyse the conversion of cis-aconitate into the end-product isocitrate. When expressed in mammalian cells, IRP1(S711E) completely fails to bind to RNA and to generate isocitrate from citrate. We demonstrate that the apparent inactivation of IRP1(S711E) is not related to mutation-associated protein misfolding or to alterations in its stability. Sequence analysis of IRP1 from all species currently deposited in protein databases shows that Ser-711 and flanking sequences are highly conserved in the evolutionary scale. Our results suggest that Ser-711 is a critical residue for the control of IRP1 activities.


Assuntos
Aconitato Hidratase/metabolismo , Proteína 1 Reguladora do Ferro/química , Proteína 1 Reguladora do Ferro/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Ferro/farmacologia , Camundongos , Mutação , Fenótipo , Fosforilação , Ligação Proteica , RNA , Homologia de Sequência de Aminoácidos , Serina , Transfecção
15.
Cell Metab ; 21(2): 311-323, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25651183

RESUMO

Mitochondrial iron accumulation is a hallmark of diseases associated with impaired iron-sulfur cluster (Fe-S) biogenesis, such as Friedreich ataxia linked to frataxin (FXN) deficiency. The pathophysiological relevance of the mitochondrial iron loading and the underlying mechanisms are unknown. Using a mouse model of hepatic FXN deficiency in combination with mice deficient for iron regulatory protein 1 (IRP1), a key regulator of cellular iron metabolism, we show that IRP1 activation in conditions of Fe-S deficiency increases the available cytosolic labile iron pool. Surprisingly, our data indicate that IRP1 activation sustains mitochondrial iron supply and function rather than driving detrimental iron overload. Mitochondrial iron accumulation is shown to depend on mitochondrial dysfunction and heme-dependent upregulation of the mitochondrial iron importer mitoferrin-2. Our results uncover an unexpected protective role of IRP1 in pathological conditions associated with altered Fe-S metabolism.


Assuntos
Proteína 1 Reguladora do Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Animais , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Proteína 1 Reguladora do Ferro/deficiência , Proteína 1 Reguladora do Ferro/genética , Proteínas Ferro-Enxofre/deficiência , Proteínas Ferro-Enxofre/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Frataxina
16.
J Inorg Biochem ; 98(8): 1413-20, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15271519

RESUMO

The cellular pro-oxidative stress induced by high zinc concentrations or cadmium is most likely mediated by disruption of redox (mainly thiol) homeostasis or by mishandling of redox-active transition metals. The impact of zinc and cadmium on the main regulators of iron homeostasis in metazoans, the iron regulatory proteins (IRP) 1 and 2, has been probed with the human recombinant proteins. Using purified proteins or extracts of yeast producing human IRP, zinc and cadmium were shown to interfere with the IRE-binding activity of IRP1, but not with that of IRP2 or the aconitase activity of IRP1. The IRP1 active site cysteines in positions 437, 503 and 506 were not directly involved in the effects of zinc and cadmium. The loss of RNA-binding activity is due to the reversible and specific aggregation of the IRP1 apoprotein with zinc and cadmium, since precipitation did not occur with other divalent metals such as manganese, cobalt or magnesium. The reported data suggest a new mechanism for the biological toxicity of cadmium and high zinc concentrations by interference with iron metabolism.


Assuntos
Cádmio/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Ferro/metabolismo , Isoformas de Proteínas/metabolismo , RNA/metabolismo , Zinco/metabolismo , Homeostase , Humanos , Proteína 1 Reguladora do Ferro/genética , Oxirredução , Isoformas de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos de Resposta
17.
Front Pharmacol ; 5: 130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24917819

RESUMO

Friedreich ataxia (FRDA) is the most common recessive ataxia in the Caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia frequently associating cardiomyopathy. The disease results from decreased expression of the FXN gene coding for the mitochondrial protein frataxin. Early histological and biochemical study of the pathophysiology in patient's samples revealed that dysregulation of iron metabolism is a key feature of the disease, mainly characterized by mitochondrial iron accumulation and by decreased activity of iron-sulfur cluster enzymes. In the recent past years, considerable progress in understanding the function of frataxin has been provided through cellular and biochemical approaches, pointing to the primary role of frataxin in iron-sulfur cluster biogenesis. However, why and how the impact of frataxin deficiency on this essential biosynthetic pathway leads to mitochondrial iron accumulation is still poorly understood. Herein, we review data on both the primary function of frataxin and the nature of the iron metabolism dysregulation in FRDA. To date, the pathophysiological implication of the mitochondrial iron overload in FRDA remains to be clarified.

18.
Dis Model Mech ; 5(2): 165-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22382366

RESUMO

In 1996, a link was identified between Friedreich's ataxia (FRDA), the most common inherited ataxia in men, and alterations in the gene encoding frataxin (FXN). Initial studies revealed that the disease is caused by a unique, most frequently biallelic, expansion of the GAA sequence in intron 1 of FXN. Since the identification of this link, there has been tremendous progress in understanding frataxin function and the mechanism of FRDA pathology, as well as in developing diagnostics and therapeutic approaches for the disease. These advances were the subject of the 4th International Friedreich's Ataxia Conference held on 5th-7th May in the Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. More than 200 scientists gathered from all over the world to present the results of research spanning all areas of investigation into FRDA (including clinical aspects, FRDA pathogenesis, genetics and epigenetics of the disease, development of new models of FRDA, and drug discovery). This review provides an update on the understanding of frataxin function, developments of animal and cellular models of the disease, and recent advances in trying to uncover potential molecules for therapy.


Assuntos
Ataxia de Friedreich/etiologia , Ataxia de Friedreich/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ataxia de Friedreich/metabolismo , Instabilidade Genômica , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Camundongos , Camundongos Knockout , Camundongos Mutantes , Modelos Biológicos , Modelos Genéticos , Expansão das Repetições de Trinucleotídeos , Frataxina
19.
Dis Model Mech ; 5(6): 860-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22736457

RESUMO

Friedreich's ataxia (FRDA) is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated.


Assuntos
Modelos Animais de Doenças , Ataxia de Friedreich/complicações , Ataxia de Friedreich/patologia , Fígado/metabolismo , Fígado/patologia , Neoplasias/complicações , Neoplasias/patologia , Animais , Estudos de Coortes , Feminino , Deleção de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Integrases/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Regeneração Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Fenótipo , Análise de Sobrevida , Frataxina
20.
PLoS One ; 6(1): e16199, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21298097

RESUMO

BACKGROUND: Frataxin, the mitochondrial protein deficient in Friedreich ataxia, a rare autosomal recessive neurodegenerative disorder, is thought to be involved in multiple iron-dependent mitochondrial pathways. In particular, frataxin plays an important role in the formation of iron-sulfur (Fe-S) clusters biogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We present data providing new insights into the interactions of mammalian frataxin with the Fe-S assembly complex by combining in vitro and in vivo approaches. Through immunoprecipitation experiments, we show that the main endogenous interactors of a recombinant mature human frataxin are ISCU, NFS1 and ISD11, the components of the core Fe-S assembly complex. Furthermore, using a heterologous expression system, we demonstrate that mammalian frataxin interacts with the preformed core complex, rather than with the individual components. The quaternary complex can be isolated in a stable form and has a molecular mass of ≈190 kDa. Finally, we demonstrate that the mature human FXN(81-210) form of frataxin is the essential functional form in vivo. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction of frataxin with the core ISCU/NFS1/ISD11 complex most likely defines the essential function of frataxin. Our results provide new elements important for further understanding the early steps of de novo Fe-S cluster biosynthesis.


Assuntos
Sobrevivência Celular , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/metabolismo , Complexos Multiproteicos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Humanos , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Mitocondriais , Complexos Multiproteicos/biossíntese , Ligação Proteica , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA