Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Comput ; 31(9): 1789-1824, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335294

RESUMO

Behavior is controlled by complex neural networks in which neurons process thousands of inputs. However, even short spike trains evoked in a single cortical neuron were demonstrated to be sufficient to influence behavior in vivo. Specifically, irregular sequences of interspike intervals (ISIs) had a more reliable influence on behavior despite their resemblance to stochastic activity. Similarly, irregular tactile stimulation led to higher rates of behavioral responses. In this study, we identify the mechanisms enabling this sensitivity to stimulus irregularity (SSI) on the neuronal and network levels using simulated spiking neural networks. Matching in vivo experiments, we find that irregular stimulation elicits more detectable network events (bursts) than regular stimulation. Dissecting the stimuli, we identify short ISIs-occurring more frequently in irregular stimulations-as the main drivers of SSI rather than complex irregularity per se. In addition, we find that short-term plasticity modulates SSI. We subsequently eliminate the different mechanisms in turn to assess their role in generating SSI. Removing inhibitory interneurons, we find that SSI is retained, suggesting that SSI is not dependent on inhibition. Removing recurrency, we find that SSI is retained due to the ability of individual neurons to integrate activity over short timescales ("cell memory"). Removing single-neuron dynamics, we find that SSI is retained based on the short-term retention of activity within the recurrent network structure ("network memory"). Finally, using a further simplified probabilistic model, we find that local network structure is not required for SSI. Hence, SSI is identified as a general property that we hypothesize to be ubiquitous in neural networks with different structures and biophysical properties. Irregular sequences contain shorter ISIs, which are the main drivers underlying SSI. The experimentally observed SSI should thus generalize to other systems, suggesting a functional role for irregular activity in cortex.


Assuntos
Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Rede Nervosa/citologia , Córtex Somatossensorial/citologia , Sinapses/fisiologia
2.
J Comput Neurosci ; 42(1): 87-106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27812835

RESUMO

Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Redes Neurais de Computação , Aprendizagem , Rede Nervosa , Plasticidade Neuronal , Neurônios
3.
PLoS Comput Biol ; 11(7): e1004386, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172394

RESUMO

Hebbian forms of synaptic plasticity are required for the orderly development of sensory circuits in the brain and are powerful modulators of learning and memory in adulthood. During development, emergence of Hebbian plasticity leads to formation of functional circuits. By modeling the dynamics of neurotransmitter release during early postnatal cortical development we show that a developmentally regulated switch in vesicle exocytosis mode triggers associative (i.e. Hebbian) plasticity. Early in development spontaneous vesicle exocytosis (SVE), often considered as 'synaptic noise', is important for homogenization of synaptic weights and maintenance of synaptic weights in the appropriate dynamic range. Our results demonstrate that SVE has a permissive, whereas subsequent evoked vesicle exocytosis (EVE) has an instructive role in the expression of Hebbian plasticity. A timed onset for Hebbian plasticity can be achieved by switching from SVE to EVE and the balance between SVE and EVE can control the effective rate of Hebbian plasticity. We further show that this developmental switch in neurotransmitter release mode enables maturation of spike-timing dependent plasticity. A mis-timed or inadequate SVE to EVE switch may lead to malformation of brain networks thereby contributing to the etiology of neurodevelopmental disorders.


Assuntos
Envelhecimento/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurotransmissores/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Rede Nervosa/fisiologia
4.
Stem Cell Res Ther ; 14(1): 50, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959625

RESUMO

BACKGROUND: Three-dimensional (3D) human brain spheroids are instrumental to study central nervous system (CNS) development and (dys)function. Yet, in current brain spheroid models the limited variety of cell types hampers an integrated exploration of CNS (disease) mechanisms. METHODS: Here we report a 5-month culture protocol that reproducibly generates H9 embryonic stem cell-derived human cortical spheroids (hCSs) with a large cell-type variety. RESULTS: We established the presence of not only neuroectoderm-derived neural progenitor populations, mature excitatory and inhibitory neurons, astrocytes and oligodendrocyte (precursor) cells, but also mesoderm-derived microglia and endothelial cell populations in the hCSs via RNA-sequencing, qPCR, immunocytochemistry and transmission electron microscopy. Transcriptomic analysis revealed resemblance between the 5-months-old hCSs and dorsal frontal rather than inferior regions of human fetal brains of 19-26 weeks of gestational age. Pro-inflammatory stimulation of the generated hCSs induced a neuroinflammatory response, offering a proof-of-principle of the applicability of the spheroids. CONCLUSIONS: Our protocol provides a 3D human brain cell model containing a wide variety of innately developing neuroectoderm- as well as mesoderm-derived cell types, furnishing a versatile platform for comprehensive examination of intercellular CNS communication and neurological disease mechanisms.


Assuntos
Encéfalo , Neurônios , Humanos , Lactente , Encéfalo/metabolismo , Neurônios/metabolismo , Células Cultivadas , Esferoides Celulares , Astrócitos
5.
NPJ Parkinsons Dis ; 7(1): 23, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674605

RESUMO

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies. The mechanisms underlying these molecular and cellular effects are largely unknown. Previously, based on genetic and other data, we built a molecular landscape of PD that highlighted a central role for lipids. To explore which lipid species may be involved in PD pathology, we used published genome-wide association study (GWAS) data to conduct polygenic risk score-based analyses to examine putative genetic sharing between PD and blood levels of 370 lipid species and lipid-related molecules. We found a shared genetic etiology between PD and blood levels of 25 lipids. We then used data from a much-extended GWAS of PD to try and corroborate our findings. Across both analyses, we found genetic overlap between PD and blood levels of eight lipid species, namely two polyunsaturated fatty acids (PUFA 20:3n3-n6 and 20:4n6), four triacylglycerols (TAG 44:1, 46:1, 46:2, and 48:0), phosphatidylcholine aa 32:3 (PC aa 32:3) and sphingomyelin 26:0 (SM 26:0). Analysis of the concordance-the agreement in genetic variant effect directions across two traits-revealed a significant negative concordance between PD and blood levels of the four triacylglycerols and PC aa 32:3 and a positive concordance between PD and blood levels of both PUFA and SM 26:0. Taken together, our analyses imply that genetic variants associated with PD modulate blood levels of a specific set of lipid species supporting a key role of these lipids in PD etiology.

6.
Biol Cybern ; 103(6): 415-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21082199

RESUMO

The double magnetic induction (DMI) method has successfully been used to record head-unrestrained gaze shifts in human subjects (Bremen et al., J Neurosci Methods 160:75-84, 2007a, J Neurophysiol, 98:3759-3769, 2007b). This method employs a small golden ring placed on the eye that, when positioned within oscillating magnetic fields, induces orientation-dependent voltages in a pickup coil in front of the eye. Here we develop and test a streamlined calibration routine for use with experimental animals, in particular, with monkeys. The calibration routine requires the animal solely to accurately follow visual targets presented at random locations in the visual field. Animals can readily learn this task. In addition, we use the fact that the pickup coil can be fixed rigidly and reproducibly on implants on the animal's skull. Therefore, accumulation of calibration data leads to increasing accuracy. As a first step, we simulated gaze shifts and the resulting DMI signals. Our simulations showed that the complex DMI signals can be effectively calibrated with the use of random target sequences, which elicit substantial decoupling of eye- and head orientations in a natural way. Subsequently, we tested our paradigm on three macaque monkeys. Our results show that the data for a successful calibration can be collected in a single recording session, in which the monkey makes about 1,500-2,000 goal-directed saccades. We obtained a resolution of 30 arc minutes (measurement range [-60,+60]°). This resolution compares to the fixation resolution of the monkey's oculomotor system, and to the standard scleral search-coil method.


Assuntos
Movimentos Oculares , Magnetismo , Animais , Calibragem , Modelos Teóricos
7.
Transl Psychiatry ; 10(1): 399, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184259

RESUMO

Schizophrenia (SZ) is a psychiatric disorder with a convoluted etiology that includes cognitive symptoms, which arise from among others a dysfunctional dorsolateral prefrontal cortex (dlPFC). In our search for the molecular underpinnings of the cognitive deficits in SZ, we here performed RNA sequencing of gray matter from the dlPFC of SZ patients and controls. We found that the differentially expressed RNAs were enriched for mRNAs involved in the Liver X Receptor/Retinoid X Receptor (LXR/RXR) lipid metabolism pathway. Components of the LXR/RXR pathway were upregulated in gray matter but not in white matter of SZ dlPFC. Intriguingly, an analysis for shared genetic etiology, using two SZ genome-wide association studies (GWASs) and GWAS data for 514 metabolites, revealed genetic overlap between SZ and acylcarnitines, VLDL lipids, and fatty acid metabolites, which are all linked to the LXR/RXR signaling pathway. Furthermore, analysis of structural T1-weighted magnetic resonance imaging in combination with cognitive behavioral data showed that the lipid content of dlPFC gray matter is lower in SZ patients than in controls and correlates with a tendency towards reduced accuracy in the dlPFC-dependent task-switching test. We conclude that aberrations in LXR/RXR-regulated lipid metabolism lead to a decreased lipid content in SZ dlPFC that correlates with reduced cognitive performance.


Assuntos
Esquizofrenia , Cognição , Estudo de Associação Genômica Ampla , Substância Cinzenta/diagnóstico por imagem , Humanos , Lipídeos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Esquizofrenia/genética
8.
JMIR Mhealth Uhealth ; 8(10): e18160, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33016886

RESUMO

BACKGROUND: The decline of cognitive processing speed (CPS) is a common dysfunction in persons with multiple sclerosis (MS). The Symbol Digit Modalities Test (SDMT) is widely used to formally quantify CPS. We implemented a variant of the SDMT in MS sherpa, a smartphone app for persons with MS. OBJECTIVE: The aim of this study was to investigate the construct validity and test-retest reliability of the MS sherpa smartphone variant of the SDMT (sSDMT). METHODS: We performed a validation study with 25 persons with relapsing-remitting MS and 79 healthy control (HC) subjects. In the HC group, 21 subjects were matched to the persons with MS with regard to age, gender, and education and they followed the same assessment schedule as the persons with MS (the "HC matched" group) and 58 subjects had a less intense assessment schedule to determine reference values (the "HC normative" group). Intraclass correlation coefficients (ICCs) were determined between the paper-and-pencil SDMT and its smartphone variant (sSDMT) on 2 occasions, 4 weeks apart. Other ICCs were determined for test-retest reliability, which were derived from 10 smartphone tests per study participant, with 3 days in between each test. Seven study participants with MS were interviewed regarding their experiences with the sSDMT. RESULTS: The SDMT scores were on average 12.06% higher than the sSDMT scores, with a standard deviation of 10.68%. An ICC of 0.838 was found for the construct validity of the sSDMT in the combined analysis of persons with MS and HC subjects. Average ICCs for test-retest reliability of the sSDMT for persons with MS, the HC matched group, and the HC normative group were 0.874, 0.857, and 0.867, respectively. The practice effect was significant between the first and the second test of the persons with MS and the HC matched group and trivial for all other test-retests. The interviewed study participants expressed a positive attitude toward the sSDMT, but they also discussed the importance of adapting a smartphone cognition test in accordance with the needs of the individual persons with MS. CONCLUSIONS: The high correlation between sSDMT and the conventional SDMT scores indicates a very good construct validity. Similarly, high correlations underpin a very good test-retest reliability of the sSDMT. We conclude that the sSDMT has the potential to be used as a tool to monitor CPS in persons with MS, both in clinical studies and in clinical practice.


Assuntos
Aplicativos Móveis , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA