Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Radiol Prot ; 44(1)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38422514

RESUMO

Epidemiological studies of patient populations have shown that high doses of radiation increase risks of cardiovascular disease (CVD). Results from a recent meta-analysis of 93 epidemiological studies covering a wide range of doses provided evidence of a causal association between radiation exposure and CVD, and indicated excess relative risk per Gy for maximum dose below 500 mGy or delivered at low dose rates. These doses cover the range of organ doses expected from multiple diagnostic computed tomography (CT) scans. Dose-effect factors for the excess absolute risk of mortality from CVD following radiation exposure were derived from the meta-analysis. The present study uses these factors to estimate excess risks of mortality for various types of CVD, including cerebrovascular disease (CeVD), from CT scans of the body and head, assuming that the meta-analytic factors were accurate and represented a causal relationship. Estimates are based on cumulative doses to the heart and brain from CT scans performed on 105 574 patients on 12 CT scanners over a period of 5½ years. The results suggest that the excess number of deaths from CeVD could be 7 or 26 per 100 000 patients depending whether threshold brain doses of 200 mGy or 50 mGy, respectively are assumed. These results could have implications for head CT scans. However, the results rely on the validity of risk factors derived in the meta-analysis informing this assessment and which include significant uncertainties. Further incidence studies should provide better information on risk factors and dose thresholds, particularly for CeVD following head CT scans.


Assuntos
Doenças Cardiovasculares , Exposição à Radiação , Humanos , Doses de Radiação , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/etiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Fatores de Risco , Exposição à Radiação/efeitos adversos , Reino Unido/epidemiologia
2.
Acta Radiol ; 64(3): 1047-1055, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35912446

RESUMO

BACKGROUND: Contrast-induced nephropathy (CIN) is an adverse reaction associated with the use of intravenous contrast media (CM). PURPOSE: To investigate the impact of low tube voltage settings on single-energy computed tomography (SECT) and rapid kV switching dual-energy CT (DECT) with reduced concentrations of iodinated CM. MATERIAL AND METHODS: A phantom containing four different concentrations of CM (original concentration CM, 20%, 40%, and 60% reductions) was scanned using SECT mode with varying tube voltages (70, 80, 100, and 120 kVp) and DECT mode through reconstructing monoenergetic energy (50 keV and 70 keV) images. ATCM system with different noise index (NI) settings were set, and the images were reconstructed using ASiR-V. Image quality were measured for individual phantom sizes and protocols and compared to a reference protocol for SECT of 120 kVp, NI = 18, threshold contrast enhancement ≥280 HU, and CNR ≥17. RESULTS: Tube voltage settings of 70 kVp together with 40% reduction in the iodinated CM is suitable for small phantom size, those of 80 kVp and 20% reduction is suitable for the medium and large sizes. This allows radiation doses to be reduced by 12%-30%. Values of CNR and contrast for DECT are better than those for SECT with the same NI setting. CONCLUSION: Diagnostic reference of image quality can be maintained by using SECT with lower tube voltage and DECT with reductions of iodinated CM concentration and radiation dose. Therefore, the NI setting can be increased when DECT is used to achieve a similar image quality.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Humanos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação
3.
J Radiol Prot ; 42(1)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34673564

RESUMO

The International Atomic Energy Agency issued a statement calling for action to strengthen the radiation protection of patients undergoing recurrent imaging. This followed reports of patients receiving cumulative effective doses over 100 mSv from multiple computed tomography examinations. In order to evaluate excess risks of cancer incidence among UK patients, data from an exposure management system covering three hospitals within one trust have been studied over 5½ years. Cumulative effective doses for 105 757 patients, from whom 719 (0.68%) received effective dose over 100 mSv, have been analysed using age and sex specific risk factors for stochastic effects. Two cancers might be expected to be initiated in the patients receiving over 100 mSv, while five might be expected to develop cancer among patients receiving 50-100 mSv. However, the calculations ignore health conditions for which the patients are being treated that may shorten their lives, and rely on the linear-no-threshold dose-effect model which is a subject of debate, so they are likely to overestimate cancer incidence. If health of the patients receiving >100 mSv is taken into account, the risk of mortality from cancer initiated by medical exposure might be the order of 1 in 2000. Recommendations on further strengthening of optimisation should be applied to imaging procedures for all patients with special focus on those performed on children and adolescents.


Assuntos
Neoplasias , Proteção Radiológica , Adolescente , Criança , Feminino , Humanos , Masculino , Doses de Radiação , Radiografia , Tomografia Computadorizada por Raios X
4.
J Radiol Prot ; 42(3)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654011

RESUMO

The lens of the eye can be damaged by ionising radiation, so individuals whose eyes are exposed to radiation during their work may need to protect their eyes from exposure. Lead glasses are widely available, but there are questions about their efficiency in providing eye protection. In this study, Monte Carlo simulations are used to assess the efficiency of lead glasses in protecting the sensitive volume of the eye lens. Two designs currently available for interventional cardiologists are a wraparound (WA) style and ones with flat frontal lenses with side shielding. These designs were considered together with four modifications that would impact upon their efficiency: changing the lead equivalent thickness, adding lead to the frames, elongating the frontal lenses, and adding a closing shield to the bottom rim. For the eye closest to the source, standard models of lead glasses only decrease the radiation reaching the most sensitive region of the eye lens by 22% or less. Varying the lead thickness between 0.4 mm and 0.75 mm had little influence on the protection provided in the simulation of clinical use, neither did adding lead to the frames. Improved shielding was obtained by elongating the frontal lens, which could reduce radiation reaching the eye lens by up to 76%. Glasses with lenses that had a rim at the base, extending towards the face of the user, also provided better shielding than current models, decreasing the dose by up to 80%. In conclusion, elongating the frontal lens of lead glasses, especially of the WA design, could provide a three-fold increase in shielding efficiency and this is still valid for lenses with 0.4 mm lead equivalence.


Assuntos
Cardiologistas , Cristalino , Exposição Ocupacional , Proteção Radiológica , Dispositivos de Proteção dos Olhos , Humanos , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Radiologia Intervencionista
5.
Inorg Chem ; 60(6): 3492-3501, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33606523

RESUMO

A molecular motor that has been previously shown to rotate when fueled by electrons through a scanning tunneling microscope tip has been functionalized with a terarylene photochrome fragment on its rotating subunit. Photoisomerization has been performed under UV irradiation. Variable-temperature 1H NMR and UV-vis studies demonstrate the rotational motion and its braking action after photoisomerization. The braking action can be reversed by thermal heating. Once the rigid and planar closed form is obtained, the rotation is effectively slowed at lower temperature, making this new rotor a potential motor with an independent response to electrons and light.

6.
J Radiol Prot ; 41(4)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34525460

RESUMO

Potential risks from radiation exposure on the development of cardiovascular and cerebrovascular disease are indicated by epidemiological studies. Medical exposures give the largest dose to the population from artificial sources, with cumulative doses from multiple CT scans being significant. Data on doses from scans performed on 12 CT scanners in three hospitals over a period of 5½ years, derived using RadimetricsTMsoftware, have been reviewed for 105 757 patients. Data have been downloaded for heart, brain, thyroid, and effective doses, and cumulative doses analysed using ExcelTMspreadsheets. 2.4% of patients having body CT scans received cumulative doses to the heart over 100 mSv, 9% of whom were under 50 years. 9.6% of patients having head CT scans received cumulative doses to the brain over 100 mSv with 0.08% over 500 mSv from whom 41% were under 50 years, but only 1.3% of patients scanned had thyroid/carotid artery doses over 100 mSv. An approximate evaluation of potential risks from exposures of the heart above 100 mSv and brain over 500 mSv for patients under 60 years would suggest that at most only one patient would demonstrate any excess risk from vascular disease resulting from the exposures. 0.67% of patients scanned received effective doses over 100 mSv, in line with results from European studies, with 8.4% being under 50 years. The application of age and sex specific risk coefficients relating to excess cancer incidence suggests that two or three patients with effective doses over 100 mSv and five patients with effective doses between 50 and 100 mSv, from those examined, might develop cancer as a result of exposure. However, this will be an overestimate, since it does not take patients' health into account. Exposure management software can aid in evaluating cumulative doses and identifying individual patients receiving substantial doses from repetitive imaging.


Assuntos
Transtornos Cerebrovasculares , Neoplasias , Transtornos Cerebrovasculares/induzido quimicamente , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/epidemiologia , Feminino , Humanos , Masculino , Doses de Radiação , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X
7.
J Radiol Prot ; 41(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690180

RESUMO

The dose quantities displayed routinely on CT scanners, the volume averaged CT dose index (CTDIvol) and dose length product, provide measures of doses calculated for standard phantoms. The American Association of Medical Physics has published conversion factors for the adjustment of CTDIvolto take account of variations in patient size, the results being termed size-specific dose estimate (SSDE). However, CTDIvoland SSDE, while useful in comparing and optimising doses from a set procedure, do not provide risk-related information that takes account of the organs and tissues irradiated and associated cancer risks. A derivative of effective dose that takes account of differences in body and organ sizes and masses, referred to here as size-specific effective dose (SED), can provide such information. Data on organ doses from NCICT software that is based on Monte Carlo simulations of CT scans for 193 adult phantoms have been used to compute values of SED for CT examinations of the trunk and results compared with corresponding values of SSDE. Relationships within ±8% were observed between SED and SSDE for scans extending over similar regions for phantoms with a wide range of sizes. Coefficients have been derived from fits of the data to estimate SED values from SSDEs for different regions of the body for scans of standard lengths based on patient height. A method developed to take account of differences in scan length gave SED results within ±5% of values calculated using the NCI phantom library. This approach could potentially be used to estimate SED from SSDE values, allowing their display at the time a CT scan is performed.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Adulto , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação
8.
Chemistry ; 26(52): 11913, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32841409

RESUMO

Invited for the cover of this issue is Gwénaël Rapenne and co-workers from CEMES-CNRS at University Paul Sabatier, Toulouse, France and from NAIST, Nara, Japan. The image depicts an artistic representation of a nanocar race. Read the full text of the article at 10.1002/chem.202001999.

9.
Chemistry ; 26(52): 12010-12018, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32530071

RESUMO

The design and synthesis of a new family of nanocars is reported. To control their motion, we integrated a dipole which can be tuned thanks to strategic donor and acceptor substituents at the 5- and 15-positions of the porphyrin backbone. The two other meso positions are substituted with ethynyltriptycene moieties which are known to act as wheels. Full characterization of nine nanocars is presented as well as the electrochemistry of these push-pull molecules. DFT calculations allowed us to evaluate the magnitude of the dipoles and to understand the electrochemical behavior and how it is affected by the electron donating and accepting groups present. An X-ray crystal structure of one nanocar has also been obtained.

10.
J Radiol Prot ; 40(2): 393-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31986511

RESUMO

The dose length product (DLP) provides a measurement related to energy imparted from a computed tomography (CT) scan. The DLP is based on the volume-averaged CT dose index (CTDI vol), which is designed for fan beams. The aims of this study were to investigate the use of DLP for scans with wide beams used in cone beam CT (DLP CBCT) in radiotherapy that would be analogous to the DLP of fan beam scans (DLP CT), and to compare the efficiencies of DLP CT and DLP CBCT in reporting the total energy imparted in patients. A validated Monte Carlo model of a kV imaging system integrated into a Varian TrueBeam linac was employed. The DLP CT was assessed by multiplying the CTDI vol for a 20 mm fan beam by scan length, and the DLP CBCT determined through multiplying the CTDI vol, estimated for wide beams using a correction factor based on free-in-air measurements, by the beam width. Two scan protocols for head and body were investigated for tube potentials between 80 and 140 kV and a range of scan lengths/widths. Efficiency values were estimated by normalising the DLP CT and DLP CBCT with respect to the corresponding dose profile integrals (DPIs), which were evaluated within 900 mm long phantoms. The results show that the DLP CBCT values were within 1% of those for DLP CT of similar length performed on the same system, and the efficiencies decrease with tube potential. However, whereas DLP values for fan beams are approximately proportional to scan length, those for wide beams decrease by ∼2% between beam widths of 20 and 320 mm. As a result, while the DLP CT efficiency is similar over all scan lengths, that for DLP CBCT increases slightly with beam width. The DLP CT and DLP CBCT underestimated the total energy imparted by comparable amounts with efficiencies within the range of 80-81% and 80-83% for the head scans, and 71-76% and 70-77% for the body scans, respectively. The results indicate that the DLP CBCT can be considered as an analogous dose index to the DLP CT. It could, therefore, be used for quantification of doses from imaging in radiotherapy and provide a valuable tool to aid optimisation.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Método de Monte Carlo , Doses de Radiação , Humanos , Imagens de Fantasmas
11.
J Radiol Prot ; 40(1): 215-224, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31703213

RESUMO

The reduction in the occupational dose limit of the eye lens has created the need for optimising eye protection and dose assessment, in particular for interventional clinicians. Lead glasses are one of the protection tools for shielding the eyes, but assessing the eye lens dose when these are in place remains challenging. In this study, we evaluated the impact of the position of H p (3) dosemeters on the estimated eye lens dose when lead glasses are used in interventional settings. Using the Monte Carlo method (MCNPX), an interventional cardiology setup was simulated for two models of lead glasses, five beam projections and two patient access routes. H p (3) dosemeters were placed at several positions on the operator and the obtained dose was compared to the dose to the sensitive part of the eye lens (H lens). Furthermore, to reproduce an experimental setup, a reference dosemeter, H p (3)ref, was placed on the surface of the eye. The dose measured by H p (3)ref was, on average, only 60% of H lens. Dosemeters placed on the glasses, under their shielding, underestimated H lens for all parameters considered, by from 10% up to 90%. Conversely, dosemeters placed on the head or on the glasses, over their shielding, overestimated H lens, on average, up to 60%. The presence or lack of side shielding in lead glasses affected mostly dosemeters placed on the forehead, at the left side. Results suggest that both use of a correction factor of 0.5 to account for the presence of lead glasses in doses measured outside their shielding and placing an eye lens dosemeter immediately beneath the lenses of lead glasses may lead to the underestimation of the eye lens dose. Most suitable positions for eye lens dose assessment were on the skin, unshielded by the glasses or close to the eye, with no correction to the dose measured.


Assuntos
Dispositivos de Proteção dos Olhos , Cristalino/efeitos da radiação , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Radiologia Intervencionista , Humanos , Chumbo , Método de Monte Carlo , Doses de Radiação , Dosímetros de Radiação
12.
J Radiol Prot ; 40(4)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33226005

RESUMO

In 2018, the International Radiation Protection Association (IRPA) established its third task group (TG) on the implementation of the eye lens dose limit. To contribute to sharing experience and raising awareness within the radiation protection community about protection of workers in exposure of the lens of the eye, the TG conducted a questionnaire survey and analysed the responses. This paper provides an overview of the results of the questionnaire.


Assuntos
Cristalino , Exposição Ocupacional , Proteção Radiológica , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Pesquisa
13.
J Am Chem Soc ; 141(51): 20043-20047, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31814390

RESUMO

We present here a new photo-active molecule which acts as a photo-Lewis acid generator (PLAG) based on photo-chemical 6π-percyclization. Photo-illumination of the PLAG molecule produces a condensed aromatic carbocation with a triflate counteranion, which exhibits Lewis acid chemical catalytic reactivity such as initiation of the polymerization of epoxy monomers and catalysis of Mukaiyama-aldol reactions. The terminal-end structure in the epoxy polymerization was modified with the Lewis acid fragment. The carbocation induced the Mukaiyama-aldol reaction as a new photo-gated system with remarkably high catalytic reactivity and turnover numbers higher than 60. The photo-chemical quantum yield of the carbocation generation is 50%, which is considerably higher than obtained with most Brønsted photo-acid generators.

15.
J Org Chem ; 83(22): 13700-13706, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30295030

RESUMO

Terarylene frameworks containing benzothiazole as a photoprecursor of hydride donors are presented. We here report on two new scaffolds along with their photoreactivity in solution. Through use of selected external oxidants, the photogeneration of hydride donors is monitored using UV-visible, NMR, and TEM methods. As a proof-of-concept, photogeneration of hydride in the presence of Ag+ gave rise to the formation of Ag nanoparticles.

16.
J Radiol Prot ; 38(1): 189-206, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29154259

RESUMO

Regular imaging is used throughout image guided radiation therapy to improve treatment delivery. In order for treatment procedures to be optimized, the doses delivered by imaging exposures should be taken into account. CT dosimetry methods based on the CT dose index (CTDI), measured with a 100 mm long pencil ionization chamber (CTDI100) in standard phantoms, are not designed for cone-beam CT (CBCT) imaging systems used in radiotherapy, therefore a modified version has been proposed for CBCT by the International Electrotechnical Commission (CTDIIEC). Monte Carlo simulations based on a Varian On-Board Imaging system were used to derive conversion coefficients that enable organ doses for ICRP reference phantoms to be determined from the CTDIIEC for different scan protocols and different beam widths (80-320) mm. A dose-width product calculated by multiplying the CTDIIEC by the width of the CBCT beam is proposed as a quantity that can be used for estimating effective dose. The variation in coefficients with CBCT beam width was studied. Coefficients to allow estimation of effective doses were derived, namely 0.0034 mSv (mGy cm)-1 for the head, 0.0252 mSv (mGy cm)-1 for the thorax, 0.0216 mSv (mGy cm)-1 for the abdomen and 0.0150 mSv (mGy cm)-1 for the pelvis, and these may be applicable more generally to other CBCT systems in radiotherapy. If data on effective doses are available, these can be used in making judgements on the contributions to patient dose from imaging, and thereby assist in optimization of the treatment regimes. The coefficients can also be employed in converting dosimetry data recorded in patient records into quantities relating directly to patient doses.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Doses de Radiação , Adulto , Feminino , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas
17.
J Radiol Prot ; 38(1): 61-80, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28952463

RESUMO

Cone-beam CT (CBCT) scans utilised for image guided radiation therapy (IGRT) procedures have become an essential part of radiotherapy. The aim of this study was to assess organ and effective doses resulting from new CBCT scan protocols (head, thorax, and pelvis) released with a software upgrade of the kV on-board-imager (OBI) system. Organ and effective doses for protocols of the new software (V2.5) and a previous version (V1.6) were assessed using Monte Carlo (MC) simulations for the International Commission on Radiological Protection (ICRP) adult male and female reference computational phantoms. The number of projections and the mAs values were increased and the size of the scan field was extended in the new protocols. Influence of these changes on organ and effective doses of the scans was investigated. The OBI system was modelled in EGSnrc/BEAMnrc, and organ doses were estimated using EGSnrc/DOSXYZnrc. The MC model was benchmarked against experimental measurements. Organ doses resulting from the V2.5 protocols were higher than those of V1.6 for organs that were partially or fully inside the scans fields, and increased by (3-13)%, (10-77)%, and (13-21)% for the head, thorax, and pelvis protocols for both phantoms, respectively. As a result, effective doses rose by 14%, 17%, and 16% for the male phantom, and 13%, 18%, and 17% for the female phantom for the three scan protocols, respectively. The scan field extension for the V2.5 protocols contributed significantly in the dose increases, especially for organs that were partially irradiated such as the thyroid in head and thorax scans and colon in the pelvic scan. The contribution of the mAs values and projection numbers was minimal in the dose increases, up to 2.5%. The field size extension plays a major role in improving the treatment output by including more markers in the field of view to match between CBCT and CT images and hence setting up the patient precisely. Therefore, a trade-off between the risk and benefits of CBCT scans should be considered, and the dose increases should be monitored. Several recommendations have been made for optimisation of the patient dose involved for IGRT procedures.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Método de Monte Carlo , Radioterapia Guiada por Imagem/métodos , Anticorpos Monoclonais/uso terapêutico , Feminino , Humanos , Masculino , Doses de Radiação , Rotação
18.
J Radiol Prot ; 37(1): 84-96, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27977415

RESUMO

Automatic tube current modulation (ATCM) systems to aid in optimizing dose and image noise have become standard on computed tomography (CT) scanners over the last decade. ATCM systems of the main vendors modulate tube current in slightly different ways, with some using a control parameter related to image noise (e.g. Toshiba, GE) while others use a quality reference image mAs (e.g. Siemens). The translation of clinical protocols including ATCM operation between CT scanners from different manufacturers in order to obtain similar levels of image quality with optimized exposure variables has become an important issue. In this study, cylindrical phantoms of different sizes representing small, average and large patients, have been combined into one phantom, which has been scanned on Siemens, Toshiba and GE CT scanners with the full ranges of ATCM image quality settings. The volume weighted CT dose index (CTDIvol) and image noise over each section of the phantom were recorded for every setting. Relationships between the image quality level settings, and CTDIvol and measured image noise were analysed in order to investigate ATCM performance. Equations were developed from fits of the data to enable CTDIvol and image noise to be expressed in terms of the image quality parameters for different size phantoms on each scanner. The Siemens scanner protocol was chosen as the reference, as it avoided high doses for large patients, while allowing full modulation of tube current for patients of all sizes, and so was considered to provide optimized performance. The equations derived were used to equate the noise parameters on Toshiba and GE scanners to the quality reference mAs on the Siemens scanner, so that clinical protocols incorporating similar levels of optimization could be obtained on the three CT scanners.


Assuntos
Protocolos Clínicos , Tomógrafos Computadorizados , Algoritmos , Calibragem , Desenho de Equipamento , Guias como Assunto , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica
19.
J Radiol Prot ; 37(2): 527-550, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28586315

RESUMO

In 2012 IRPA established a task group (TG) to identify key issues in the implementation of the revised eye lens dose limit. The TG reported its conclusions in 2013. In January 2015, IRPA asked the TG to review progress with the implementation of the recommendations from the early report and to collate current practitioner experience. This report presents the results of a survey on the view of the IRPA professionals on the new limit to the lens of the eye and on the wider issue of tissue reactions. Recommendations derived from the survey are presented. This report was approved by IRPA Executive Council on 31 January 2017.


Assuntos
Cristalino/efeitos da radiação , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Lesões por Radiação/prevenção & controle , Proteção Radiológica/normas , Relação Dose-Resposta à Radiação , Humanos , Internacionalidade , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA